Cargando…
Deep Learning Classification of Treatment Response in Diabetic Painful Neuropathy: A Combined Machine Learning and Magnetic Resonance Neuroimaging Methodological Study
Functional magnetic resonance imaging (fMRI) has been shown successfully to assess and stratify patients with painful diabetic peripheral neuropathy (pDPN). This supports the idea of using neuroimaging as a mechanism-based technique to individualise therapy for patients with painful DPN. The aim of...
Autores principales: | Teh, Kevin, Armitage, Paul, Tesfaye, Solomon, Selvarajah, Dinesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931783/ https://www.ncbi.nlm.nih.gov/pubmed/36018533 http://dx.doi.org/10.1007/s12021-022-09603-5 |
Ejemplares similares
-
Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging
por: Teh, Kevin, et al.
Publicado: (2020) -
Central Pain Processing in Chronic Chemotherapy-Induced Peripheral Neuropathy: A Functional Magnetic Resonance Imaging Study
por: Boland, Elaine G., et al.
Publicado: (2014) -
Preservation of thalamic neuronal function may be a prerequisite for pain perception in diabetic neuropathy: A magnetic resonance spectroscopy study
por: Gandhi, Rajiv, et al.
Publicado: (2023) -
Painful Diabetic Neuropathy Is Associated With Greater Autonomic Dysfunction Than Painless Diabetic Neuropathy
por: Gandhi, Rajiv A., et al.
Publicado: (2010) -
Somatosensory network functional connectivity differentiates clinical pain phenotypes in diabetic neuropathy
por: Teh, Kevin, et al.
Publicado: (2021)