Cargando…
Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes
Environmental issues are brought up concerning the production of Portland cement. As a result, biocement serves as a reliable substitute for Portland cement in green construction projects. This study created a brand-new technique to create high-quality biocement from agricultural wastes. The techniq...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932060/ https://www.ncbi.nlm.nih.gov/pubmed/36792676 http://dx.doi.org/10.1038/s41598-023-29180-0 |
_version_ | 1784889366221422592 |
---|---|
author | Abdelsalam, Essam M. Samer, Mohamed Seifelnasr, Amira Moselhy, Mohamed A. Ibrahim, Hatem H. A. Faried, Maryam Attia, Yasser A. |
author_facet | Abdelsalam, Essam M. Samer, Mohamed Seifelnasr, Amira Moselhy, Mohamed A. Ibrahim, Hatem H. A. Faried, Maryam Attia, Yasser A. |
author_sort | Abdelsalam, Essam M. |
collection | PubMed |
description | Environmental issues are brought up concerning the production of Portland cement. As a result, biocement serves as a reliable substitute for Portland cement in green construction projects. This study created a brand-new technique to create high-quality biocement from agricultural wastes. The technique is based on nanomaterials that improve and accelerate the "Microbially Induced Calcite Precipitation (MICP)" process, which improves the quality of the biocement produced. The mixture was further mixed with the addition of 5 mg/l of graphitic carbon nitride nanosheets (g-C(3)N(4) NSs), alumina nanoparticles (Al(2)O(3) NPs), or silica nanoparticles (SiO(2) NPs). The cement: sand ratio was 1:3, the ash: cement ratio was 1:9, and water: cement ratio was 1:2. Cubes molds were prepared, and then cast and compacted. Subsequent de-molding, all specimens were cured in nutrient broth-urea (NBU) media until testing at 28 days. The medium was replenished at an interval of 7 days. The results show that the addition of 5 mg/l of g-C(3)N(4) NSs with corncob ash delivered the highest “Compressive Strength” and the highest “Flexural Strength” of biocement mortar cubes of 18 and 7.6 megapascal (MPa), respectively; and an acceptable “Water Absorption” (5.42%) compared to all other treatments. This treatment delivered a “Compressive Strength”, “Flexural Strength”, and “Water Absorption” reduction of 1.67, 1.26, and 1.21 times the control (standard Portland cement). It was concluded that adding 5 mg/l of g-C(3)N(4) NSs to the cementitious mixture enhances its properties, where the resulting biocement is a promising substitute for conventional Portland cement. Adding nanomaterials to cement reduces its permeability to ions, increasing its strength and durability. The use of these nanomaterials can enhance the performance of concrete infrastructures. The use of nanoparticles is an effective solution to reduce the environmental impact associated with concrete production. |
format | Online Article Text |
id | pubmed-9932060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99320602023-02-17 Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes Abdelsalam, Essam M. Samer, Mohamed Seifelnasr, Amira Moselhy, Mohamed A. Ibrahim, Hatem H. A. Faried, Maryam Attia, Yasser A. Sci Rep Article Environmental issues are brought up concerning the production of Portland cement. As a result, biocement serves as a reliable substitute for Portland cement in green construction projects. This study created a brand-new technique to create high-quality biocement from agricultural wastes. The technique is based on nanomaterials that improve and accelerate the "Microbially Induced Calcite Precipitation (MICP)" process, which improves the quality of the biocement produced. The mixture was further mixed with the addition of 5 mg/l of graphitic carbon nitride nanosheets (g-C(3)N(4) NSs), alumina nanoparticles (Al(2)O(3) NPs), or silica nanoparticles (SiO(2) NPs). The cement: sand ratio was 1:3, the ash: cement ratio was 1:9, and water: cement ratio was 1:2. Cubes molds were prepared, and then cast and compacted. Subsequent de-molding, all specimens were cured in nutrient broth-urea (NBU) media until testing at 28 days. The medium was replenished at an interval of 7 days. The results show that the addition of 5 mg/l of g-C(3)N(4) NSs with corncob ash delivered the highest “Compressive Strength” and the highest “Flexural Strength” of biocement mortar cubes of 18 and 7.6 megapascal (MPa), respectively; and an acceptable “Water Absorption” (5.42%) compared to all other treatments. This treatment delivered a “Compressive Strength”, “Flexural Strength”, and “Water Absorption” reduction of 1.67, 1.26, and 1.21 times the control (standard Portland cement). It was concluded that adding 5 mg/l of g-C(3)N(4) NSs to the cementitious mixture enhances its properties, where the resulting biocement is a promising substitute for conventional Portland cement. Adding nanomaterials to cement reduces its permeability to ions, increasing its strength and durability. The use of these nanomaterials can enhance the performance of concrete infrastructures. The use of nanoparticles is an effective solution to reduce the environmental impact associated with concrete production. Nature Publishing Group UK 2023-02-15 /pmc/articles/PMC9932060/ /pubmed/36792676 http://dx.doi.org/10.1038/s41598-023-29180-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Abdelsalam, Essam M. Samer, Mohamed Seifelnasr, Amira Moselhy, Mohamed A. Ibrahim, Hatem H. A. Faried, Maryam Attia, Yasser A. Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title | Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title_full | Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title_fullStr | Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title_full_unstemmed | Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title_short | Effects of Al(2)O(3), SiO(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
title_sort | effects of al(2)o(3), sio(2) nanoparticles, and g-c(3)n(4) nanosheets on biocement production from agricultural wastes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932060/ https://www.ncbi.nlm.nih.gov/pubmed/36792676 http://dx.doi.org/10.1038/s41598-023-29180-0 |
work_keys_str_mv | AT abdelsalamessamm effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT samermohamed effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT seifelnasramira effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT moselhymohameda effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT ibrahimhatemha effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT fariedmaryam effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes AT attiayassera effectsofal2o3sio2nanoparticlesandgc3n4nanosheetsonbiocementproductionfromagriculturalwastes |