Cargando…
Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications
Membrane proteins mediate a wide spectrum of biological processes, such as signal transduction and cell communication. Due to the arduous and costly nature inherent to the experimental process, membrane proteins have long been devoid of well-resolved atomic-level tertiary structures and, consequentl...
Autores principales: | Sun, Jianfeng, Kulandaisamy, Arulsamy, Liu, Jacklyn, Hu, Kai, Gromiha, M. Michael, Zhang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932300/ https://www.ncbi.nlm.nih.gov/pubmed/36817959 http://dx.doi.org/10.1016/j.csbj.2023.01.036 |
Ejemplares similares
-
TMKit: a Python interface for computational analysis of transmembrane proteins
por: Sun, Jianfeng, et al.
Publicado: (2023) -
ProNAB: database for binding affinities of protein–nucleic acid complexes and their mutants
por: Harini, Kannan, et al.
Publicado: (2021) -
Functional discrimination of membrane proteins using machine learning techniques
por: Gromiha, M Michael, et al.
Publicado: (2008) -
Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure
por: Popov, Petr, et al.
Publicado: (2019) -
Development of a Machine Learning Method to Predict Membrane Protein-Ligand Binding Residues Using Basic Sequence Information
por: Suresh, M. Xavier, et al.
Publicado: (2015)