Cargando…

Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios

This work aimed to evaluate changes in water balance components (precipitation, evapotranspiration, and water availability) and precipitation extremes projected under global warming levels (GWLs) of 1.5 °C and 2 °C, in Brazil. An ensemble of eight twenty-first-century projections with the Eta Region...

Descripción completa

Detalles Bibliográficos
Autores principales: da Silva Tavares, Priscila, Acosta, Ricardo, Nobre, Paulo, Resende, Nicole Costa, Chou, Sin Chan, de Arruda Lyra, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932420/
https://www.ncbi.nlm.nih.gov/pubmed/36820201
http://dx.doi.org/10.1007/s10113-023-02042-1
Descripción
Sumario:This work aimed to evaluate changes in water balance components (precipitation, evapotranspiration, and water availability) and precipitation extremes projected under global warming levels (GWLs) of 1.5 °C and 2 °C, in Brazil. An ensemble of eight twenty-first-century projections with the Eta Regional Climate Model and their driving Global Climate Models (CanESM2, HadGEM2-ES, MIROC5, and BESM) were used. Projections of two Representative Concentration Pathway scenarios, RCP4.5 and RCP8.5, considered intermediate and high concentration, respectively, were used. The results indicate that the RCP8.5 scenario under 2 °C GWL is likely to have a higher impact on the water balance components, amplifying trends in drier conditions and increasing the number of consecutive dry days in some regions of Brazil, particularly in the North and Northeast regions. On the other hand, the projections indicate the opposite sign for the South region, with trends toward wetter conditions and significant increases in extreme rainfall. The 0.5 °C difference between the GWLs contributes to intensifying reductions (increases) from 4 to 7% in water availability, mainly in the North-Northeast (South) regions. The projected changes could have serious consequences, such as increases in the number of drought events in hydrographic regions of the Northeast region of Brazil and increases in flood events in the South of the country. The results here presented can contribute to the formulation of adaptive planning strategies aimed at ensuring Brazil’s water security towards climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-023-02042-1.