Cargando…
X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module
SIGNIFICANCE: X-ray Cherenkov–luminescence tomography (XCLT) produces fast emission data from megavoltage (MV) x-ray scanning, in which the excitation location of molecules within tissue is reconstructed. However standard filtered backprojection (FBP) algorithms for XCLT sinogram reconstruction can...
Autores principales: | Feng, Jinchao, Zhang, Hu, Geng, Mengfan, Chen, Hanliang, Jia, Kebin, Sun, Zhonghua, Li, Zhe, Cao, Xu, Pogue, Brian W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932523/ https://www.ncbi.nlm.nih.gov/pubmed/36818584 http://dx.doi.org/10.1117/1.JBO.28.2.026004 |
Ejemplares similares
-
Theoretical lateral and axial sensitivity limits and choices of molecular reporters for Cherenkov-excited luminescence in tissue during x-ray beam scanning
por: LaRochelle, Ethan P. M., et al.
Publicado: (2020) -
Comparison of phosphorescent agents for noninvasive sensing of tumor oxygenation via Cherenkov-excited luminescence imaging
por: Shell, Jennifer R., et al.
Publicado: (2019) -
Cherenkov luminescence imaging of shallow sources in semitransparent media
por: Komarov, Sergey, et al.
Publicado: (2019) -
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
Face-based age estimation using improved Swin Transformer with attention-based convolution
por: Shi, Chaojun, et al.
Publicado: (2023)