Cargando…

Main factors associated with foot-and-mouth disease virus infection during the 2001 FMD epidemic in Uruguay

Large epidemics provide the opportunity to understand the epidemiology of diseases under the specific conditions of the affected population. Whilst foot-and-mouth disease (FMD) epidemics have been extensively studied in developed countries, epidemics in developing countries have been sparsely studie...

Descripción completa

Detalles Bibliográficos
Autores principales: Iriarte, María V., Gonzáles, José L., de Freitas Costa, Eduardo, Gil, Andrés D., de Jong, Mart C. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932531/
https://www.ncbi.nlm.nih.gov/pubmed/36816185
http://dx.doi.org/10.3389/fvets.2023.1070188
Descripción
Sumario:Large epidemics provide the opportunity to understand the epidemiology of diseases under the specific conditions of the affected population. Whilst foot-and-mouth disease (FMD) epidemics have been extensively studied in developed countries, epidemics in developing countries have been sparsely studied. Here we address this limitation by systematically studying the 2001 epidemic in Uruguay where a total of 2,057 farms were affected. The objective of this study was to identify the risk factors (RF) associated with infection and spread of the virus within the country. The epidemic was divided into four periods: (1) the high-risk period (HRP) which was the period between the FMD virus introduction and detection of the index case; (2) the local control measures period (LCM) which encompassed the first control measures implemented before mass vaccination was adopted; (3) the first mass vaccination, and (4) the second mass vaccination round. A stochastic model was developed to estimate the time of initial infection for each of the affected farms. Our analyses indicated that during the HRP around 242 farms were probably already infected. In this period, a higher probability of infection was associated with: (1) animal movements [OR: 1.57 (95% CI: 1.19–2.06)]; (2) farms that combined livestock with crop production [OR: 1.93 (95% CI: 1.43–2.60)]; (3) large and medium farms compared to small farms (this difference was dependent on regional herd density); (4) the geographical location. Keeping cattle only (vs farms that kept also sheep) was a significant RF during the subsequent epidemic period (LCM), and remained as RF, together with large farms, for the entire epidemic. We further explored the RF associated with FMDV infection in farms that raised cattle by fitting another model to a data subset. We found that dairy farms had a higher probability of FMDV infection than beef farms during the HRP [OR: 1.81 (95% CI: 1.12–2.83)], and remained as RF until the end of the first round of vaccination. The delay in the detection of the index case associated with unrestricted animal movements during the HRP may have contributed to this large epidemic. This study contributes to the knowledge of FMD epidemiology in extensive production systems.