Cargando…
Machine Learning-Based Quality Assurance for Automatic Segmentation of Head-and-Neck Organs-at-Risk in Radiotherapy
Purpose/Objective(s): With the development of deep learning, more convolutional neural networks (CNNs) are being introduced in automatic segmentation to reduce oncologists’ labor requirement. However, it is still challenging for oncologists to spend considerable time evaluating the quality of the co...
Autores principales: | Luan, Shunyao, Xue, Xudong, Wei, Changchao, Ding, Yi, Zhu, Benpeng, Wei, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932790/ https://www.ncbi.nlm.nih.gov/pubmed/36788411 http://dx.doi.org/10.1177/15330338231157936 |
Ejemplares similares
-
Utilizing the TractSeg Tool for Automatic Corticospinal Tract
Segmentation in Patients With Brain Pathology
por: Moshe, Yael H., et al.
Publicado: (2022) -
PCG-net: feature adaptive deep learning for automated head and neck organs-at-risk segmentation
por: Luan, Shunyao, et al.
Publicado: (2023) -
Deep Learning for Patient-Specific Quality Assurance: Predicting Gamma Passing Rates for IMRT Based on Delivery Fluence Informed by log Files
por: Huang, Ying, et al.
Publicado: (2022) -
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy
por: Chen, Wen, et al.
Publicado: (2021) -
Automatic Identification and Segmentation of Orbital Blowout Fractures Based on Artificial Intelligence
por: Bao, Xiao-li, et al.
Publicado: (2023)