Cargando…
Detection of Proximal Caries Lesions on Bitewing Radiographs Using Deep Learning Method
This study aimed to evaluate the validity of a deep learning-based convolutional neural network (CNN) for detecting proximal caries lesions on bitewing radiographs. A total of 978 bitewing radiographs, 10,899 proximal surfaces, were evaluated by two endodontists and a radiologist, of which 2,719 sur...
Autores principales: | Chen, Xiaotong, Guo, Jiachang, Ye, Jiaxue, Zhang, Mingming, Liang, Yuhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932834/ https://www.ncbi.nlm.nih.gov/pubmed/36215971 http://dx.doi.org/10.1159/000527418 |
Ejemplares similares
-
Deep learning for early dental caries detection in bitewing radiographs
por: Lee, Shinae, et al.
Publicado: (2021) -
Dental Students’ Ability to Detect Only-Enamel Proximal Caries on Bitewing Radiographs
por: Elnawawy, Mohamed Samir A, et al.
Publicado: (2022) -
Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs
por: Bayraktar, Yusuf, et al.
Publicado: (2021) -
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
por: Büttner, Martha, et al.
Publicado: (2023) -
Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks
por: Moran, Maira, et al.
Publicado: (2021)