Cargando…
Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstruc...
Autores principales: | Schilling, Kurt G., Tax, Chantal M.W., Rheault, Francois, Hansen, Colin, Yang, Qi, Yeh, Fang-Cheng, Cai, Leon, Anderson, Adam W., Landman, Bennett A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933001/ https://www.ncbi.nlm.nih.gov/pubmed/34358660 http://dx.doi.org/10.1016/j.neuroimage.2021.118451 |
Ejemplares similares
-
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
por: Liu, Renfei, et al.
Publicado: (2022) -
BundleCleaner: Unsupervised Denoising and Subsampling of Diffusion MRI-Derived Tractography Data
por: Feng, Yixue, et al.
Publicado: (2023) -
Localized abnormalities in the cingulum bundle in patients with schizophrenia: A Diffusion Tensor tractography study
por: Whitford, Thomas J., et al.
Publicado: (2014) -
Implementation considerations for deep learning with diffusion MRI streamline tractography
por: Cai, Leon Y., et al.
Publicado: (2023) -
Scanner invariant representations for diffusion MRI harmonization
por: Moyer, Daniel, et al.
Publicado: (2020)