Cargando…

Enzyme Immobilization Technologies and Industrial Applications

[Image: see text] Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immob...

Descripción completa

Detalles Bibliográficos
Autores principales: Maghraby, Yasmin R., El-Shabasy, Rehan M., Ibrahim, Ahmed H., Azzazy, Hassan Mohamed El-Said
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933091/
https://www.ncbi.nlm.nih.gov/pubmed/36816672
http://dx.doi.org/10.1021/acsomega.2c07560
Descripción
Sumario:[Image: see text] Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.