Cargando…

Nanocomposite of CO(2)-Based Polycarbonate Polyol with Highly Exfoliated Nanoclay

[Image: see text] Polypropylene carbonate (PPC) derived from carbon dioxide has been used as a precursor for the synthesis of polyurethane (PU). The high viscosity of the PPC is the key parameter hindering its processability during PU synthesis. Herein, a PPC nanocomposite with highly exfoliated nan...

Descripción completa

Detalles Bibliográficos
Autores principales: Alroaithi, Mohammad, Xu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933217/
https://www.ncbi.nlm.nih.gov/pubmed/36816631
http://dx.doi.org/10.1021/acsomega.2c05705
Descripción
Sumario:[Image: see text] Polypropylene carbonate (PPC) derived from carbon dioxide has been used as a precursor for the synthesis of polyurethane (PU). The high viscosity of the PPC is the key parameter hindering its processability during PU synthesis. Herein, a PPC nanocomposite with highly exfoliated nanoclay was prepared through a solution intercalation process. A wide range of nanoclay concentrations incorporated into the PPC were studied. The impacts of the nanoclay on the PPC were investigated in order to maintain the polymer structure while improving its physical properties. The characterizations of PPC nanocomposites showed that the highly exfoliated nanoclay contributed to a viscosity reduction, and a slight reduction in the molecular weight. The polymer degradation was indicated by the formation of cyclic propylene carbonate. The minimum or critical concentration of nanoclay was found to be between ∼0.5 and 2.0 wt %. Within this range, the polymer degradation is minimal. The PPC nanocomposites with a lower viscosity showed excellent precursors for making PU coating materials. The PU coating derived from the PPC nanocomposite has higher anticorrosive properties in comparison with the non-modified PU coating.