Cargando…
Predictive Modeling of PROTAC Cell Permeability with Machine Learning
[Image: see text] Approaches for predicting proteolysis targeting chimera (PROTAC) cell permeability are of major interest to reduce resource-demanding synthesis and testing of low-permeable PROTACs. We report a comprehensive investigation of the scope and limitations of machine learning-based binar...
Autores principales: | Poongavanam, Vasanthanathan, Kölling, Florian, Giese, Anja, Göller, Andreas H., Lehmann, Lutz, Meibom, Daniel, Kihlberg, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933238/ https://www.ncbi.nlm.nih.gov/pubmed/36816707 http://dx.doi.org/10.1021/acsomega.2c07717 |
Ejemplares similares
-
Linker-Dependent
Folding Rationalizes PROTAC Cell
Permeability
por: Poongavanam, Vasanthanathan, et al.
Publicado: (2022) -
Solution Conformations Shed Light on PROTAC Cell Permeability
por: Atilaw, Yoseph, et al.
Publicado: (2020) -
Cell Permeability of Isomeric Macrocycles: Predictions
and NMR Studies
por: Begnini, Fabio, et al.
Publicado: (2021) -
Macrocycles
in
Drug Discovery—Learning from
the Past for the Future
por: Garcia Jimenez, Diego, et al.
Publicado: (2023) -
Solubility prediction in the bRo5 chemical space: where are we right now?
por: Ermondi, Giuseppe, et al.
Publicado: (2020)