Cargando…
Should multiple imputation be stratified by exposure group when estimating causal effects via outcome regression in observational studies?
BACKGROUND: Despite recent advances in causal inference methods, outcome regression remains the most widely used approach for estimating causal effects in epidemiological studies with a single-point exposure and outcome. Missing data are common in these studies, and complete-case analysis (CCA) and...
Autores principales: | Zhang, Jiaxin, Dashti, S Ghazaleh, Carlin, John B., Lee, Katherine J., Moreno-Betancur, Margarita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933305/ https://www.ncbi.nlm.nih.gov/pubmed/36797679 http://dx.doi.org/10.1186/s12874-023-01843-6 |
Ejemplares similares
-
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
Evaluation of approaches for multiple imputation of three-level data
por: Wijesuriya, Rushani, et al.
Publicado: (2020) -
Multiple imputation approaches for handling incomplete three‐level data with time‐varying cluster‐memberships
por: Wijesuriya, Rushani, et al.
Publicado: (2022) -
Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome
por: Middleton, Melissa, et al.
Publicado: (2022) -
Evaluation of approaches for accommodating interactions and non‐linear terms in multiple imputation of incomplete three‐level data
por: Wijesuriya, Rushani, et al.
Publicado: (2021)