Cargando…

Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor

[Image: see text] Vibrational spectroscopy is a key technique to elucidate microscopic structure and dynamics. Without the aid of theoretical approaches, it is, however, often difficult to understand such spectra at a microscopic level. Ab initio molecular dynamics has repeatedly proved to be suitab...

Descripción completa

Detalles Bibliográficos
Autor principal: Schienbein, Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933433/
https://www.ncbi.nlm.nih.gov/pubmed/36695707
http://dx.doi.org/10.1021/acs.jctc.2c00788
_version_ 1784889676572655616
author Schienbein, Philipp
author_facet Schienbein, Philipp
author_sort Schienbein, Philipp
collection PubMed
description [Image: see text] Vibrational spectroscopy is a key technique to elucidate microscopic structure and dynamics. Without the aid of theoretical approaches, it is, however, often difficult to understand such spectra at a microscopic level. Ab initio molecular dynamics has repeatedly proved to be suitable for this purpose; however, the computational cost can be daunting. Here, the E(3)-equivariant neural network e3nn is used to fit the atomic polar tensor of liquid water a posteriori on top of existing molecular dynamics simulations. Notably, the introduced methodology is general and thus transferable to any other system as well. The target property is most fundamental and gives access to the IR spectrum, and more importantly, it is a highly powerful tool to directly assign IR spectral features to nuclear motion—a connection which has been pursued in the past but only using severe approximations due to the prohibitive computational cost. The herein introduced methodology overcomes this bottleneck. To benchmark the machine learning model, the IR spectrum of liquid water is calculated, indeed showing excellent agreement with the explicit reference calculation. In conclusion, the presented methodology gives a new route to calculate accurate IR spectra from molecular dynamics simulations and will facilitate the understanding of such spectra on a microscopic level.
format Online
Article
Text
id pubmed-9933433
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99334332023-02-17 Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor Schienbein, Philipp J Chem Theory Comput [Image: see text] Vibrational spectroscopy is a key technique to elucidate microscopic structure and dynamics. Without the aid of theoretical approaches, it is, however, often difficult to understand such spectra at a microscopic level. Ab initio molecular dynamics has repeatedly proved to be suitable for this purpose; however, the computational cost can be daunting. Here, the E(3)-equivariant neural network e3nn is used to fit the atomic polar tensor of liquid water a posteriori on top of existing molecular dynamics simulations. Notably, the introduced methodology is general and thus transferable to any other system as well. The target property is most fundamental and gives access to the IR spectrum, and more importantly, it is a highly powerful tool to directly assign IR spectral features to nuclear motion—a connection which has been pursued in the past but only using severe approximations due to the prohibitive computational cost. The herein introduced methodology overcomes this bottleneck. To benchmark the machine learning model, the IR spectrum of liquid water is calculated, indeed showing excellent agreement with the explicit reference calculation. In conclusion, the presented methodology gives a new route to calculate accurate IR spectra from molecular dynamics simulations and will facilitate the understanding of such spectra on a microscopic level. American Chemical Society 2023-01-25 /pmc/articles/PMC9933433/ /pubmed/36695707 http://dx.doi.org/10.1021/acs.jctc.2c00788 Text en © 2023 The Author. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Schienbein, Philipp
Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title_full Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title_fullStr Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title_full_unstemmed Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title_short Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor
title_sort spectroscopy from machine learning by accurately representing the atomic polar tensor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933433/
https://www.ncbi.nlm.nih.gov/pubmed/36695707
http://dx.doi.org/10.1021/acs.jctc.2c00788
work_keys_str_mv AT schienbeinphilipp spectroscopyfrommachinelearningbyaccuratelyrepresentingtheatomicpolartensor