Cargando…
Vaccination against SARS-CoV-2 using extracellular blebs derived from spike protein-expressing dendritic cells
COVID-19 has caused significant morbidity and mortality worldwide but also accelerated the clinical use of emerging vaccine formulations. To address the current shortcomings in the prevention and treatment of SARS-CoV-2 infection, this study developed a novel vaccine platform that closely mimics den...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933546/ https://www.ncbi.nlm.nih.gov/pubmed/36822152 http://dx.doi.org/10.1016/j.cellimm.2023.104691 |
Sumario: | COVID-19 has caused significant morbidity and mortality worldwide but also accelerated the clinical use of emerging vaccine formulations. To address the current shortcomings in the prevention and treatment of SARS-CoV-2 infection, this study developed a novel vaccine platform that closely mimics dendritic cells (DCs) in antigen presentation and T-cell stimulation in a cell-free and tunable manner. Genetically engineered DCs that express the SARS-CoV-2 spike protein (S) were chemically converted into extracellular blebs (EBs). The resulting EBs elicited potentially protective humoral immunity in vivo, indicated by the production of antibodies that potently neutralized S-pseudotyped virus, presenting EBs as a promising and safe vaccine. |
---|