Cargando…
High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
[Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report e...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933598/ https://www.ncbi.nlm.nih.gov/pubmed/36720070 http://dx.doi.org/10.1021/acsnano.2c11319 |
_version_ | 1784889708269010944 |
---|---|
author | Carey, Tian Cassidy, Oran Synnatschke, Kevin Caffrey, Eoin Garcia, James Liu, Shixin Kaur, Harneet Kelly, Adam G. Munuera, Jose Gabbett, Cian O’Suilleabhain, Domhnall Coleman, Jonathan N. |
author_facet | Carey, Tian Cassidy, Oran Synnatschke, Kevin Caffrey, Eoin Garcia, James Liu, Shixin Kaur, Harneet Kelly, Adam G. Munuera, Jose Gabbett, Cian O’Suilleabhain, Domhnall Coleman, Jonathan N. |
author_sort | Carey, Tian |
collection | PubMed |
description | [Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe(2)) and tungsten disulfide (WS(2)) as well as MoS(2) as a comparison. We use Langmuir–Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2–5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μ(MoS(2)) ≈ 11 cm(2) V(–1) s(–1), μ(WS(2)) ≈ 9 cm(2) V(–1) s(–1), and μ(WSe(2)) ≈ 2 cm(2) V(–1) s(–1) with a current on/off ratios of I(on)/I(off) ≈ 2.6 × 10(3), 3.4 × 10(3), and 4.2 × 10(4) for MoS(2), WS(2), and WSe(2), respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe(2) transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain. |
format | Online Article Text |
id | pubmed-9933598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99335982023-02-17 High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides Carey, Tian Cassidy, Oran Synnatschke, Kevin Caffrey, Eoin Garcia, James Liu, Shixin Kaur, Harneet Kelly, Adam G. Munuera, Jose Gabbett, Cian O’Suilleabhain, Domhnall Coleman, Jonathan N. ACS Nano [Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe(2)) and tungsten disulfide (WS(2)) as well as MoS(2) as a comparison. We use Langmuir–Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2–5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μ(MoS(2)) ≈ 11 cm(2) V(–1) s(–1), μ(WS(2)) ≈ 9 cm(2) V(–1) s(–1), and μ(WSe(2)) ≈ 2 cm(2) V(–1) s(–1) with a current on/off ratios of I(on)/I(off) ≈ 2.6 × 10(3), 3.4 × 10(3), and 4.2 × 10(4) for MoS(2), WS(2), and WSe(2), respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe(2) transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain. American Chemical Society 2023-01-31 /pmc/articles/PMC9933598/ /pubmed/36720070 http://dx.doi.org/10.1021/acsnano.2c11319 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Carey, Tian Cassidy, Oran Synnatschke, Kevin Caffrey, Eoin Garcia, James Liu, Shixin Kaur, Harneet Kelly, Adam G. Munuera, Jose Gabbett, Cian O’Suilleabhain, Domhnall Coleman, Jonathan N. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides |
title | High-Mobility Flexible
Transistors with Low-Temperature
Solution-Processed Tungsten Dichalcogenides |
title_full | High-Mobility Flexible
Transistors with Low-Temperature
Solution-Processed Tungsten Dichalcogenides |
title_fullStr | High-Mobility Flexible
Transistors with Low-Temperature
Solution-Processed Tungsten Dichalcogenides |
title_full_unstemmed | High-Mobility Flexible
Transistors with Low-Temperature
Solution-Processed Tungsten Dichalcogenides |
title_short | High-Mobility Flexible
Transistors with Low-Temperature
Solution-Processed Tungsten Dichalcogenides |
title_sort | high-mobility flexible
transistors with low-temperature
solution-processed tungsten dichalcogenides |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933598/ https://www.ncbi.nlm.nih.gov/pubmed/36720070 http://dx.doi.org/10.1021/acsnano.2c11319 |
work_keys_str_mv | AT careytian highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT cassidyoran highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT synnatschkekevin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT caffreyeoin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT garciajames highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT liushixin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT kaurharneet highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT kellyadamg highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT munuerajose highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT gabbettcian highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT osuilleabhaindomhnall highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides AT colemanjonathann highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides |