Cargando…

High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides

[Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report e...

Descripción completa

Detalles Bibliográficos
Autores principales: Carey, Tian, Cassidy, Oran, Synnatschke, Kevin, Caffrey, Eoin, Garcia, James, Liu, Shixin, Kaur, Harneet, Kelly, Adam G., Munuera, Jose, Gabbett, Cian, O’Suilleabhain, Domhnall, Coleman, Jonathan N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933598/
https://www.ncbi.nlm.nih.gov/pubmed/36720070
http://dx.doi.org/10.1021/acsnano.2c11319
_version_ 1784889708269010944
author Carey, Tian
Cassidy, Oran
Synnatschke, Kevin
Caffrey, Eoin
Garcia, James
Liu, Shixin
Kaur, Harneet
Kelly, Adam G.
Munuera, Jose
Gabbett, Cian
O’Suilleabhain, Domhnall
Coleman, Jonathan N.
author_facet Carey, Tian
Cassidy, Oran
Synnatschke, Kevin
Caffrey, Eoin
Garcia, James
Liu, Shixin
Kaur, Harneet
Kelly, Adam G.
Munuera, Jose
Gabbett, Cian
O’Suilleabhain, Domhnall
Coleman, Jonathan N.
author_sort Carey, Tian
collection PubMed
description [Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe(2)) and tungsten disulfide (WS(2)) as well as MoS(2) as a comparison. We use Langmuir–Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2–5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μ(MoS(2)) ≈ 11 cm(2) V(–1) s(–1), μ(WS(2)) ≈ 9 cm(2) V(–1) s(–1), and μ(WSe(2)) ≈ 2 cm(2) V(–1) s(–1) with a current on/off ratios of I(on)/I(off) ≈ 2.6 × 10(3), 3.4 × 10(3), and 4.2 × 10(4) for MoS(2), WS(2), and WSe(2), respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe(2) transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain.
format Online
Article
Text
id pubmed-9933598
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99335982023-02-17 High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides Carey, Tian Cassidy, Oran Synnatschke, Kevin Caffrey, Eoin Garcia, James Liu, Shixin Kaur, Harneet Kelly, Adam G. Munuera, Jose Gabbett, Cian O’Suilleabhain, Domhnall Coleman, Jonathan N. ACS Nano [Image: see text] The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS(2)) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe(2)) and tungsten disulfide (WS(2)) as well as MoS(2) as a comparison. We use Langmuir–Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2–5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μ(MoS(2)) ≈ 11 cm(2) V(–1) s(–1), μ(WS(2)) ≈ 9 cm(2) V(–1) s(–1), and μ(WSe(2)) ≈ 2 cm(2) V(–1) s(–1) with a current on/off ratios of I(on)/I(off) ≈ 2.6 × 10(3), 3.4 × 10(3), and 4.2 × 10(4) for MoS(2), WS(2), and WSe(2), respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe(2) transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain. American Chemical Society 2023-01-31 /pmc/articles/PMC9933598/ /pubmed/36720070 http://dx.doi.org/10.1021/acsnano.2c11319 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Carey, Tian
Cassidy, Oran
Synnatschke, Kevin
Caffrey, Eoin
Garcia, James
Liu, Shixin
Kaur, Harneet
Kelly, Adam G.
Munuera, Jose
Gabbett, Cian
O’Suilleabhain, Domhnall
Coleman, Jonathan N.
High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title_full High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title_fullStr High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title_full_unstemmed High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title_short High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides
title_sort high-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933598/
https://www.ncbi.nlm.nih.gov/pubmed/36720070
http://dx.doi.org/10.1021/acsnano.2c11319
work_keys_str_mv AT careytian highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT cassidyoran highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT synnatschkekevin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT caffreyeoin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT garciajames highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT liushixin highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT kaurharneet highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT kellyadamg highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT munuerajose highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT gabbettcian highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT osuilleabhaindomhnall highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides
AT colemanjonathann highmobilityflexibletransistorswithlowtemperaturesolutionprocessedtungstendichalcogenides