Cargando…
High-performance and low-power source-gated transistors enabled by a solution-processed metal oxide homojunction
Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,00...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934017/ https://www.ncbi.nlm.nih.gov/pubmed/36630451 http://dx.doi.org/10.1073/pnas.2216672120 |
Sumario: | Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 μW power consumption are realized using an indium oxide In(2)O(3)/In(2)O(3):polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO(2). Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlO(x) gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 μW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human–computer interfacing. |
---|