Cargando…
EmoKbGAN: Emotion controlled response generation using Generative Adversarial Network for knowledge grounded conversation
Neural open-domain dialogue systems often fail to engage humans in long-term interactions on popular topics such as sports, politics, fashion, and entertainment. However, to have more socially engaging conversations, we need to formulate strategies that consider emotion, relevant-facts, and user beh...
Autores principales: | Varshney, Deeksha, Ekbal, Asif, Tiwari, Mrigank, Nagaraja, Ganesh Prasad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934437/ https://www.ncbi.nlm.nih.gov/pubmed/36795731 http://dx.doi.org/10.1371/journal.pone.0280458 |
Ejemplares similares
-
Natural Language Generation Using Transformer Network in an Open-Domain Setting
por: Varshney, Deeksha, et al.
Publicado: (2020) -
Knowledge grounded medical dialogue generation using augmented graphs
por: Varshney, Deeksha, et al.
Publicado: (2023) -
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020)