Cargando…

Developing a clinical grade human adipose decellularized biomaterial

While tissue engineering investigators have appreciated adipose tissue as a repository of stromal/stem cells, they are only now beginning to see its value as a decellularized tissue resource. Independent academic investigators have successfully extracted lipid, genomic DNA and proteins from human fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayes, Daniel J., Gimble, Jeffrey M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934471/
https://www.ncbi.nlm.nih.gov/pubmed/36824487
http://dx.doi.org/10.1016/j.bbiosy.2022.100053
Descripción
Sumario:While tissue engineering investigators have appreciated adipose tissue as a repository of stromal/stem cells, they are only now beginning to see its value as a decellularized tissue resource. Independent academic investigators have successfully extracted lipid, genomic DNA and proteins from human fat to create a decellularized extracellular matrix enriched in collagen, glycoproteins, and proteoglycans. Pre-clinical studies have validated its compatibility with stromal/stem cells and its ability to support adipogenesis in vitro and in vivo in both small (murine) and large (porcine) subcutaneous implant models. Furthermore, Phase I safety clinical trials have injected decellularized human adipose tissue scaffolds in human volunteers without incident for periods of up to 127 days. This commentary takes an opinionated look at the under-appreciated but potential benefits of obesity as an increasingly available biomaterial resource.