Cargando…

Ketamine evoked disruption of entorhinal and hippocampal spatial maps

Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Masuda, Francis Kei, Sun, Yanjun, Aery Jones, Emily A, Giocomo, Lisa M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934572/
https://www.ncbi.nlm.nih.gov/pubmed/36798242
http://dx.doi.org/10.1101/2023.02.05.527227
Descripción
Sumario:Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here, we used electrophysiology and calcium imaging to examine ketamine’s impacts on the medial entorhinal cortex and hippocampus, which contain neurons that encode an animal’s spatial position, as mice navigated virtual reality and real world environments. Ketamine induced an acute disruption and long-term re-organization of entorhinal spatial representations. This acute ketamine-induced disruption reflected increased excitatory neuron firing rates and degradation of cell-pair temporal firing rate relationships. In the reciprocally connected hippocampus, the activity of neurons that encode the position of the animal was suppressed after ketamine administration. Together, these findings point to disruption in the spatial coding properties of the entorhinal-hippocampal circuit as a potential neural substrate for ketamine-induced changes in spatial cognition.