Cargando…

Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?

The nervous system predicts and executes complex motion of body segments actuated by the coordinated action of muscles. When a stroke or other traumatic injury disrupts neural processing, the impeded behavior has not only kinematic but also kinetic attributes that require interpretation. Biomechanic...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahdasariants, Serhii, Barela, Ana Maria Forti, Gritsenko, Valeriya, Bacca, Odair, Barela, José Angelo, Yakovenko, Sergiy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934618/
https://www.ncbi.nlm.nih.gov/pubmed/36798166
http://dx.doi.org/10.1101/2023.02.09.527805
Descripción
Sumario:The nervous system predicts and executes complex motion of body segments actuated by the coordinated action of muscles. When a stroke or other traumatic injury disrupts neural processing, the impeded behavior has not only kinematic but also kinetic attributes that require interpretation. Biomechanical models could allow medical specialists to observe these dynamic variables and instantaneously diagnose mobility issues that may otherwise remain unnoticed. However, the real-time and subject-specific dynamic computations necessitate the optimization these simulations. In this study, we explored the effects of intrinsic viscoelasticity, choice of numerical integration method, and decrease in sampling frequency on the accuracy and stability of the simulation. The bipedal model with 17 rotational degrees of freedom (DOF)—describing hip, knee, ankle, and standing foot contact—was instrumented with viscoelastic elements with a resting length in the middle of the DOF range of motion. The accumulation of numerical errors was evaluated in dynamic simulations using swing-phase experimental kinematics. The relationship between viscoelasticity, sampling rates, and the integrator type was evaluated. The optimal selection of these three factors resulted in an accurate reconstruction of joint kinematics (err < 1%) and kinetics (err < 5%) with increased simulation time steps. Notably, joint viscoelasticity reduced the integration errors of explicit methods and had minimal to no additional benefit for implicit methods. Gained insights have the potential to improve diagnostic tools and accurize real-time feedback simulations used in the functional recovery of neuromuscular diseases and intuitive control of modern prosthetic solutions.