Cargando…
Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4(+) T cells, are unknown. Here, we int...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934674/ https://www.ncbi.nlm.nih.gov/pubmed/36798236 http://dx.doi.org/10.1101/2023.02.07.527545 |
_version_ | 1784889927821950976 |
---|---|
author | Itell, Hannah L. Humes, Daryl Overbaugh, Julie |
author_facet | Itell, Hannah L. Humes, Daryl Overbaugh, Julie |
author_sort | Itell, Hannah L. |
collection | PubMed |
description | Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4(+) T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4(+) T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4(+) T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs. |
format | Online Article Text |
id | pubmed-9934674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99346742023-02-17 Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells Itell, Hannah L. Humes, Daryl Overbaugh, Julie bioRxiv Article Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4(+) T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4(+) T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4(+) T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs. Cold Spring Harbor Laboratory 2023-02-07 /pmc/articles/PMC9934674/ /pubmed/36798236 http://dx.doi.org/10.1101/2023.02.07.527545 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Itell, Hannah L. Humes, Daryl Overbaugh, Julie Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title | Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title_full | Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title_fullStr | Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title_full_unstemmed | Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title_short | Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4(+) T cells |
title_sort | several cell-intrinsic effectors drive type i interferon-mediated restriction of hiv-1 in primary cd4(+) t cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934674/ https://www.ncbi.nlm.nih.gov/pubmed/36798236 http://dx.doi.org/10.1101/2023.02.07.527545 |
work_keys_str_mv | AT itellhannahl severalcellintrinsiceffectorsdrivetypeiinterferonmediatedrestrictionofhiv1inprimarycd4tcells AT humesdaryl severalcellintrinsiceffectorsdrivetypeiinterferonmediatedrestrictionofhiv1inprimarycd4tcells AT overbaughjulie severalcellintrinsiceffectorsdrivetypeiinterferonmediatedrestrictionofhiv1inprimarycd4tcells |