Cargando…

Time to lysis determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system

Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsueh, Brian Y., Sanath-Kumar, Ram, Bedore, Amber M., Waters, Christopher M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934689/
https://www.ncbi.nlm.nih.gov/pubmed/36798279
http://dx.doi.org/10.1101/2023.02.09.527960
Descripción
Sumario:Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced shutoff of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer lysis time like T5 are sensitive to AvcID-mediated protection while those with a shorter lysis time like T7 are resistant.