Cargando…

SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations

Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene–trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a...

Descripción completa

Detalles Bibliográficos
Autores principales: Melton, Hunter J., Zhang, Zichen, Wu, Chong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934719/
https://www.ncbi.nlm.nih.gov/pubmed/36798253
http://dx.doi.org/10.1101/2023.02.02.23285208
_version_ 1784889933855457280
author Melton, Hunter J.
Zhang, Zichen
Wu, Chong
author_facet Melton, Hunter J.
Zhang, Zichen
Wu, Chong
author_sort Melton, Hunter J.
collection PubMed
description Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene–trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the accuracy of gene expression prediction by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models using SUMMIT-FA with a comprehensive functional database MACIE and the eQTL summary-level data from the eQTLGen consortium. By applying the resulting models to GWASs for 24 complex traits and exploring it through a simulation study, we show that SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, identifies significantly more gene-trait associations, and improves predictive power for identifying “silver standard” genes compared to several benchmark methods.
format Online
Article
Text
id pubmed-9934719
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-99347192023-02-17 SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations Melton, Hunter J. Zhang, Zichen Wu, Chong medRxiv Article Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene–trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the accuracy of gene expression prediction by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models using SUMMIT-FA with a comprehensive functional database MACIE and the eQTL summary-level data from the eQTLGen consortium. By applying the resulting models to GWASs for 24 complex traits and exploring it through a simulation study, we show that SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, identifies significantly more gene-trait associations, and improves predictive power for identifying “silver standard” genes compared to several benchmark methods. Cold Spring Harbor Laboratory 2023-02-06 /pmc/articles/PMC9934719/ /pubmed/36798253 http://dx.doi.org/10.1101/2023.02.02.23285208 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Melton, Hunter J.
Zhang, Zichen
Wu, Chong
SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title_full SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title_fullStr SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title_full_unstemmed SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title_short SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
title_sort summit-fa: a new resource for improved transcriptome imputation using functional annotations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934719/
https://www.ncbi.nlm.nih.gov/pubmed/36798253
http://dx.doi.org/10.1101/2023.02.02.23285208
work_keys_str_mv AT meltonhunterj summitfaanewresourceforimprovedtranscriptomeimputationusingfunctionalannotations
AT zhangzichen summitfaanewresourceforimprovedtranscriptomeimputationusingfunctionalannotations
AT wuchong summitfaanewresourceforimprovedtranscriptomeimputationusingfunctionalannotations