Cargando…
Variational Temporal Deconfounder for Individualized Treatment Effect Estimation with Longitudinal Observational Data
PURPOSE: This paper proposes a new approach, Variational Temporal Deconfounder (VTD), for estimating individualized treatment effects (ITE) from longitudinal observational data, where we address the hidden confounding issues by using proxies (i.e., surrogate variables that serve for unobservable var...
Autores principales: | Feng, Zheng, Prosperi, Mattia, Guo, Yi, Bian, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934764/ https://www.ncbi.nlm.nih.gov/pubmed/36798248 http://dx.doi.org/10.21203/rs.3.rs-2536079/v1 |
Ejemplares similares
-
Pseudotime estimation: deconfounding single cell time series
por: Reid, John E., et al.
Publicado: (2016) -
Deconfounded Dimension Reduction via Partial Embeddings
por: Chen, Andrew A., et al.
Publicado: (2023) -
Critical Analysis of Deconfounded Pretraining to Improve Visio-Linguistic Models
por: Cornille, Nathan, et al.
Publicado: (2022) -
Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach
por: Repsilber, Dirk, et al.
Publicado: (2010) -
Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data
por: Cavinato, Lara, et al.
Publicado: (2023)