Cargando…
Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging
To establish a deep learning (DL) model in differentiating borderline ovarian tumor (BOT) from epithelial ovarian cancer (EOC) on conventional MR imaging. We retrospectively enrolled 201 patients of 102 pathologically proven BOTs and 99 EOCs at OB/GYN hospital Fudan University, between January 2015...
Autores principales: | Wang, Yida, Zhang, He, Wang, Tianping, Yao, Liangqing, Zhang, Guofu, Liu, Xuefen, Yang, Guang, Yuan, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935539/ https://www.ncbi.nlm.nih.gov/pubmed/36797331 http://dx.doi.org/10.1038/s41598-023-29814-3 |
Ejemplares similares
-
Two-dimensional and three-dimensional T2 weighted imaging-based radiomic signatures for the preoperative discrimination of ovarian borderline tumors and malignant tumors
por: Liu, Xuefen, et al.
Publicado: (2022) -
MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols
por: Wang, Tianping, et al.
Publicado: (2022) -
MR findings of primary ovarian granulosa cell tumor with focus on the differentiation with other ovarian sex cord-stromal tumors
por: Zhang, He, et al.
Publicado: (2018) -
Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images
por: Wang, Huiquan, et al.
Publicado: (2021) -
MDCT-Based Radiomics Features for the Differentiation of Serous Borderline Ovarian Tumors and Serous Malignant Ovarian Tumors
por: Yu, Xin-ping, et al.
Publicado: (2021)