Cargando…
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability
OBJECTIVES: To develop an automatic method for accurate and robust thalamus segmentation in T1w-MRI for widespread clinical use without the need for strict harmonization of acquisition protocols and/or scanner-specific normal databases. METHODS: A three-dimensional convolutional neural network (3D-C...
Autores principales: | Opfer, Roland, Krüger, Julia, Spies, Lothar, Ostwaldt, Ann-Christin, Kitzler, Hagen H., Schippling, Sven, Buchert, Ralph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935653/ https://www.ncbi.nlm.nih.gov/pubmed/36264314 http://dx.doi.org/10.1007/s00330-022-09170-y |
Ejemplares similares
-
Single-subject analysis of regional brain volumetric measures can be strongly influenced by the method for head size adjustment
por: Opfer, Roland, et al.
Publicado: (2022) -
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks
por: Krüger, Julia, et al.
Publicado: (2020) -
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023) -
CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images
por: Lim, Ruth P., et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022)