Cargando…

Ultra-small low-threshold mid-infrared plasmonic nanowire lasers based on n-doped GaN

An ultra-small mid-infrared plasmonic nanowire laser based on n-doped GaN metallic material is proposed and studied by the finite-difference time-domain method. In comparison with the noble metals, nGaN is found to possess superior permittivity characteristics in the mid-infrared range, beneficial f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jiahui, Yan, Xin, Zhang, Xia, Ren, Xiaomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935799/
https://www.ncbi.nlm.nih.gov/pubmed/36795199
http://dx.doi.org/10.1186/s11671-023-03797-6
Descripción
Sumario:An ultra-small mid-infrared plasmonic nanowire laser based on n-doped GaN metallic material is proposed and studied by the finite-difference time-domain method. In comparison with the noble metals, nGaN is found to possess superior permittivity characteristics in the mid-infrared range, beneficial for generating low-loss surface plasmon polaritons and achieving strong subwavelength optical confinement. The results show that at a wavelength of 4.2 µm, the penetration depth into the dielectric is substantially decreased from 1384 to 163 nm by replacing Au with nGaN, and the cutoff diameter of nGaN-based laser is as small as 265 nm, only 65% that of the Au-based one. To suppress the relatively large propagation loss induced by nGaN, an nGaN/Au-based laser structure is designed, whose threshold gain has been reduced by nearly half. This work may pave the way for the development of miniaturized low-consumption mid-infrared lasers.