Cargando…

Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation

Postoperative cognitive dysfunction (POCD) is a recognized clinical complication defined by a new cognitive impairment arising after a surgical procedure. Elderly patients are especially vulnerable to cognitive impairment after surgical operations, but the underlying mechanisms remain elusive. Oxida...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Liang, Meng, Fanqing, Li, Dongliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935806/
https://www.ncbi.nlm.nih.gov/pubmed/36819786
http://dx.doi.org/10.1155/2023/7272456
_version_ 1784890092279562240
author Li, Liang
Meng, Fanqing
Li, Dongliang
author_facet Li, Liang
Meng, Fanqing
Li, Dongliang
author_sort Li, Liang
collection PubMed
description Postoperative cognitive dysfunction (POCD) is a recognized clinical complication defined by a new cognitive impairment arising after a surgical procedure. Elderly patients are especially vulnerable to cognitive impairment after surgical operations, but the underlying mechanisms remain elusive. Oxidative stress and neuroinflammation in the hippocampus, a brain region involved in memory formation, are considered as major contributors to the development of POCD. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of endogenous inducible defense system, plays a crucial role in protecting cells against oxidative stress and inflammation by enhancing transcription of antioxidant and anti-inflammatory target genes. Here, we examined whether aging downregulates Nrf2 in the hippocampus and, if so, whether downregulation of hippocampal Nrf2 contributes to POCD in aging. Young and aged rats underwent abdominal surgery or sham operation. One week later, cognitive function was assessed, and brains were collected for molecular studies. Compared with young sham rats, aged sham rats exhibited a significant reduction in expression of Nrf2 in the hippocampus. Interestingly, the expression of Nrf2 downstream target genes and levels of reactive oxygen species (ROS) and proinflammatory cytokines in the hippocampus as well as cognitive function were comparable between aged sham and young sham rats. After abdominal surgery, young rats showed significant upregulation of Nrf2 and its target genes in the hippocampus. However, aged rats did not show changes in expression of Nrf2 and its target genes but had increased levels of ROS and proinflammatory cytokines in the hippocampus, along with cognitive impairment as indicated by reduced contextual freezing time. Moreover, upregulation of hippocampal Nrf2 in aged rats with intracerebroventricular infusion of a Nrf2 activator reduced levels of ROS and proinflammatory cytokines in the hippocampus, ameliorating cognitive dysfunction after surgery. The results suggest that aging-induced downregulation of Nrf2 in the hippocampus causes the failure to activate Nrf2-regulated antioxidant defense system in response to surgical insult, which contributes to POCD by sensitizing oxidative stress and neuroinflammation. Nrf2 activation in the brain may be a novel strategy to prevent the cognitive decline in elderly patients after surgery.
format Online
Article
Text
id pubmed-9935806
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-99358062023-02-18 Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation Li, Liang Meng, Fanqing Li, Dongliang Oxid Med Cell Longev Research Article Postoperative cognitive dysfunction (POCD) is a recognized clinical complication defined by a new cognitive impairment arising after a surgical procedure. Elderly patients are especially vulnerable to cognitive impairment after surgical operations, but the underlying mechanisms remain elusive. Oxidative stress and neuroinflammation in the hippocampus, a brain region involved in memory formation, are considered as major contributors to the development of POCD. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of endogenous inducible defense system, plays a crucial role in protecting cells against oxidative stress and inflammation by enhancing transcription of antioxidant and anti-inflammatory target genes. Here, we examined whether aging downregulates Nrf2 in the hippocampus and, if so, whether downregulation of hippocampal Nrf2 contributes to POCD in aging. Young and aged rats underwent abdominal surgery or sham operation. One week later, cognitive function was assessed, and brains were collected for molecular studies. Compared with young sham rats, aged sham rats exhibited a significant reduction in expression of Nrf2 in the hippocampus. Interestingly, the expression of Nrf2 downstream target genes and levels of reactive oxygen species (ROS) and proinflammatory cytokines in the hippocampus as well as cognitive function were comparable between aged sham and young sham rats. After abdominal surgery, young rats showed significant upregulation of Nrf2 and its target genes in the hippocampus. However, aged rats did not show changes in expression of Nrf2 and its target genes but had increased levels of ROS and proinflammatory cytokines in the hippocampus, along with cognitive impairment as indicated by reduced contextual freezing time. Moreover, upregulation of hippocampal Nrf2 in aged rats with intracerebroventricular infusion of a Nrf2 activator reduced levels of ROS and proinflammatory cytokines in the hippocampus, ameliorating cognitive dysfunction after surgery. The results suggest that aging-induced downregulation of Nrf2 in the hippocampus causes the failure to activate Nrf2-regulated antioxidant defense system in response to surgical insult, which contributes to POCD by sensitizing oxidative stress and neuroinflammation. Nrf2 activation in the brain may be a novel strategy to prevent the cognitive decline in elderly patients after surgery. Hindawi 2023-02-09 /pmc/articles/PMC9935806/ /pubmed/36819786 http://dx.doi.org/10.1155/2023/7272456 Text en Copyright © 2023 Liang Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Liang
Meng, Fanqing
Li, Dongliang
Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title_full Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title_fullStr Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title_full_unstemmed Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title_short Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation
title_sort downregulation of nrf2 in the hippocampus contributes to postoperative cognitive dysfunction in aged rats by sensitizing oxidative stress and neuroinflammation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935806/
https://www.ncbi.nlm.nih.gov/pubmed/36819786
http://dx.doi.org/10.1155/2023/7272456
work_keys_str_mv AT liliang downregulationofnrf2inthehippocampuscontributestopostoperativecognitivedysfunctioninagedratsbysensitizingoxidativestressandneuroinflammation
AT mengfanqing downregulationofnrf2inthehippocampuscontributestopostoperativecognitivedysfunctioninagedratsbysensitizingoxidativestressandneuroinflammation
AT lidongliang downregulationofnrf2inthehippocampuscontributestopostoperativecognitivedysfunctioninagedratsbysensitizingoxidativestressandneuroinflammation