Cargando…
Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality
PURPOSE: To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. MATERIALS AND METHODS: We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative recon...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935960/ https://www.ncbi.nlm.nih.gov/pubmed/36818715 http://dx.doi.org/10.3348/jksr.2021.0073 |
Sumario: | PURPOSE: To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. MATERIALS AND METHODS: We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients’ ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. RESULTS: The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. CONCLUSION: Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts. |
---|