Cargando…
Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis
Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936074/ https://www.ncbi.nlm.nih.gov/pubmed/36819107 http://dx.doi.org/10.3389/fcell.2023.1112270 |
_version_ | 1784890157973897216 |
---|---|
author | Panneman, Daan M. Hitti-Malin, Rebekkah J. Holtes, Lara K. de Bruijn, Suzanne E. Reurink, Janine Boonen, Erica G. M. Khan, Muhammad Imran Ali, Manir Andréasson, Sten De Baere, Elfride Banfi, Sandro Bauwens, Miriam Ben-Yosef, Tamar Bocquet, Béatrice De Bruyne, Marieke de la Cerda, Berta Coppieters, Frauke Farinelli, Pietro Guignard, Thomas Inglehearn, Chris F. Karali, Marianthi Kjellström, Ulrika Koenekoop, Robert de Koning, Bart Leroy, Bart P. McKibbin, Martin Meunier, Isabelle Nikopoulos, Konstantinos Nishiguchi, Koji M. Poulter, James A. Rivolta, Carlo Rodríguez de la Rúa, Enrique Saunders, Patrick Simonelli, Francesca Tatour, Yasmin Testa, Francesco Thiadens, Alberta A. H. J. Toomes, Carmel Tracewska, Anna M. Tran, Hoai Viet Ushida, Hiroaki Vaclavik, Veronika Verhoeven, Virginie J. M. van de Vorst, Maartje Gilissen, Christian Hoischen, Alexander Cremers, Frans P. M. Roosing, Susanne |
author_facet | Panneman, Daan M. Hitti-Malin, Rebekkah J. Holtes, Lara K. de Bruijn, Suzanne E. Reurink, Janine Boonen, Erica G. M. Khan, Muhammad Imran Ali, Manir Andréasson, Sten De Baere, Elfride Banfi, Sandro Bauwens, Miriam Ben-Yosef, Tamar Bocquet, Béatrice De Bruyne, Marieke de la Cerda, Berta Coppieters, Frauke Farinelli, Pietro Guignard, Thomas Inglehearn, Chris F. Karali, Marianthi Kjellström, Ulrika Koenekoop, Robert de Koning, Bart Leroy, Bart P. McKibbin, Martin Meunier, Isabelle Nikopoulos, Konstantinos Nishiguchi, Koji M. Poulter, James A. Rivolta, Carlo Rodríguez de la Rúa, Enrique Saunders, Patrick Simonelli, Francesca Tatour, Yasmin Testa, Francesco Thiadens, Alberta A. H. J. Toomes, Carmel Tracewska, Anna M. Tran, Hoai Viet Ushida, Hiroaki Vaclavik, Veronika Verhoeven, Virginie J. M. van de Vorst, Maartje Gilissen, Christian Hoischen, Alexander Cremers, Frans P. M. Roosing, Susanne |
author_sort | Panneman, Daan M. |
collection | PubMed |
description | Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing. |
format | Online Article Text |
id | pubmed-9936074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99360742023-02-18 Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis Panneman, Daan M. Hitti-Malin, Rebekkah J. Holtes, Lara K. de Bruijn, Suzanne E. Reurink, Janine Boonen, Erica G. M. Khan, Muhammad Imran Ali, Manir Andréasson, Sten De Baere, Elfride Banfi, Sandro Bauwens, Miriam Ben-Yosef, Tamar Bocquet, Béatrice De Bruyne, Marieke de la Cerda, Berta Coppieters, Frauke Farinelli, Pietro Guignard, Thomas Inglehearn, Chris F. Karali, Marianthi Kjellström, Ulrika Koenekoop, Robert de Koning, Bart Leroy, Bart P. McKibbin, Martin Meunier, Isabelle Nikopoulos, Konstantinos Nishiguchi, Koji M. Poulter, James A. Rivolta, Carlo Rodríguez de la Rúa, Enrique Saunders, Patrick Simonelli, Francesca Tatour, Yasmin Testa, Francesco Thiadens, Alberta A. H. J. Toomes, Carmel Tracewska, Anna M. Tran, Hoai Viet Ushida, Hiroaki Vaclavik, Veronika Verhoeven, Virginie J. M. van de Vorst, Maartje Gilissen, Christian Hoischen, Alexander Cremers, Frans P. M. Roosing, Susanne Front Cell Dev Biol Cell and Developmental Biology Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing. Frontiers Media S.A. 2023-02-03 /pmc/articles/PMC9936074/ /pubmed/36819107 http://dx.doi.org/10.3389/fcell.2023.1112270 Text en Copyright © 2023 Panneman, Hitti-Malin, Holtes, de Bruijn, Reurink, Boonen, Khan, Ali, Andréasson, De Baere, Banfi, Bauwens, Ben-Yosef, Bocquet, De Bruyne, Cerda, Coppieters, Farinelli, Guignard, Inglehearn, Karali, Kjellström, Koenekoop, de Koning, Leroy, McKibbin, Meunier, Nikopoulos, Nishiguchi, Poulter, Rivolta, Rodríguez de la Rúa, Saunders, Simonelli, Tatour, Testa, Thiadens, Toomes, Tracewska, Tran, Ushida, Vaclavik, Verhoeven, van de Vorst, Gilissen, Hoischen, Cremers and Roosing. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Panneman, Daan M. Hitti-Malin, Rebekkah J. Holtes, Lara K. de Bruijn, Suzanne E. Reurink, Janine Boonen, Erica G. M. Khan, Muhammad Imran Ali, Manir Andréasson, Sten De Baere, Elfride Banfi, Sandro Bauwens, Miriam Ben-Yosef, Tamar Bocquet, Béatrice De Bruyne, Marieke de la Cerda, Berta Coppieters, Frauke Farinelli, Pietro Guignard, Thomas Inglehearn, Chris F. Karali, Marianthi Kjellström, Ulrika Koenekoop, Robert de Koning, Bart Leroy, Bart P. McKibbin, Martin Meunier, Isabelle Nikopoulos, Konstantinos Nishiguchi, Koji M. Poulter, James A. Rivolta, Carlo Rodríguez de la Rúa, Enrique Saunders, Patrick Simonelli, Francesca Tatour, Yasmin Testa, Francesco Thiadens, Alberta A. H. J. Toomes, Carmel Tracewska, Anna M. Tran, Hoai Viet Ushida, Hiroaki Vaclavik, Veronika Verhoeven, Virginie J. M. van de Vorst, Maartje Gilissen, Christian Hoischen, Alexander Cremers, Frans P. M. Roosing, Susanne Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title | Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title_full | Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title_fullStr | Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title_full_unstemmed | Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title_short | Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis |
title_sort | cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and leber congenital amaurosis |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936074/ https://www.ncbi.nlm.nih.gov/pubmed/36819107 http://dx.doi.org/10.3389/fcell.2023.1112270 |
work_keys_str_mv | AT pannemandaanm costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT hittimalinrebekkahj costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT holteslarak costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT debruijnsuzannee costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT reurinkjanine costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT boonenericagm costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT khanmuhammadimran costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT alimanir costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT andreassonsten costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT debaereelfride costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT banfisandro costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT bauwensmiriam costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT benyoseftamar costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT bocquetbeatrice costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT debruynemarieke costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT delacerdaberta costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT coppietersfrauke costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT farinellipietro costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT guignardthomas costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT inglehearnchrisf costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT karalimarianthi costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT kjellstromulrika costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT koenekooprobert costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT dekoningbart costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT leroybartp costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT mckibbinmartin costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT meunierisabelle costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT nikopouloskonstantinos costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT nishiguchikojim costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT poulterjamesa costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT rivoltacarlo costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT rodriguezdelaruaenrique costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT saunderspatrick costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT simonellifrancesca costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT tatouryasmin costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT testafrancesco costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT thiadensalbertaahj costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT toomescarmel costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT tracewskaannam costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT tranhoaiviet costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT ushidahiroaki costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT vaclavikveronika costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT verhoevenvirginiejm costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT vandevorstmaartje costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT gilissenchristian costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT hoischenalexander costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT cremersfranspm costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis AT roosingsusanne costeffectivesequenceanalysisof113genesin1192probandswithretinitispigmentosaandlebercongenitalamaurosis |