Cargando…
Motor imagery classification method based on relative wavelet packet entropy brain network and improved lasso
Motor imagery (MI) electroencephalogram (EEG) signals have a low signal-to-noise ratio, which brings challenges in feature extraction and feature selection with high classification accuracy. In this study, we proposed an approach that combined an improved lasso with relief-f to extract the wavelet p...
Autores principales: | Wang, Manqing, Zhou, Hui, Li, Xin, Chen, Siyu, Gao, Dongrui, Zhang, Yongqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936148/ https://www.ncbi.nlm.nih.gov/pubmed/36816135 http://dx.doi.org/10.3389/fnins.2023.1113593 |
Ejemplares similares
-
Wavelet Packet Entropy for Heart Murmurs Classification
por: Safara, Fatemeh, et al.
Publicado: (2012) -
Enhancement of Event-Related Desynchronization in Motor Imagery Based on Transcranial Electrical Stimulation
por: Xie, Jiaxin, et al.
Publicado: (2021) -
A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification
por: Gao, Dongrui, et al.
Publicado: (2022) -
Medical Image Authentication Method Based on the Wavelet Packet and Energy Entropy
por: Sun, Tiankai, et al.
Publicado: (2022) -
Identity Vector Extraction by Perceptual Wavelet Packet Entropy and Convolutional Neural Network for Voice Authentication
por: Lei, Lei, et al.
Publicado: (2018)