Cargando…
An integrated solution of deep reinforcement learning for automatic IMRT treatment planning in non-small-cell lung cancer
PURPOSE: To develop and evaluate an integrated solution for automatic intensity-modulated radiation therapy (IMRT) planning in non-small-cell lung cancer (NSCLC) cases. METHODS: A novel algorithm named as multi-objectives adjustment policy network (MOAPN) was proposed and trained to learn how to adj...
Autores principales: | Wang, Hanlin, Bai, Xue, Wang, Yajuan, Lu, Yanfei, Wang, Binbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936236/ https://www.ncbi.nlm.nih.gov/pubmed/36816929 http://dx.doi.org/10.3389/fonc.2023.1124458 |
Ejemplares similares
-
On correlations in IMRT planning aims
por: Roy, Arkajyoti, et al.
Publicado: (2016) -
A deep learning approach for automatic tumor delineation in stereotactic radiotherapy for non-small cell lung cancer using diagnostic PET-CT and planning CT
por: Yu, Xuyao, et al.
Publicado: (2023) -
Influence of beamlet width on dynamic IMRT plan quality in nasopharyngeal carcinoma
por: Wu, Manya, et al.
Publicado: (2022) -
Automated IMRT planning with regional optimization using planning scripts
por: Xhaferllari, Ilma, et al.
Publicado: (2013) -
Comparison of Dosimetric Parameters and Clinical Outcomes in Inversely Planned Intensity-Modulated Radiotherapy (IMRT) and Field-in-Field Forward Planned IMRT for the Treatment of Breast Cancer
por: Azharuddin, SK, et al.
Publicado: (2022)