Cargando…

Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting

INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic...

Descripción completa

Detalles Bibliográficos
Autores principales: Clubb, James H. A., Kudling, Tatiana V., Girych, Mykhailo, Haybout, Lyna, Pakola, Santeri, Hamdan, Firas, Cervera-Carrascon, Víctor, Hemmes, Annabrita, Grönberg-Vähä-Koskela, Susanna, Santos, João Manuel, Quixabeira, Dafne C. A., Basnet, Saru, Heiniö, Camilla, Arias, Victor, Jirovec, Elise, Kaptan, Shreyas, Havunen, Riikka, Sorsa, Suvi, Erikat, Abdullah, Schwartz, Joel, Anttila, Marjukka, Aro, Katri, Viitala, Tapani, Vattulainen, Ilpo, Cerullo, Vincenzo, Kanerva, Anna, Hemminki, Akseli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936529/
https://www.ncbi.nlm.nih.gov/pubmed/36817448
http://dx.doi.org/10.3389/fimmu.2023.1060540
_version_ 1784890251748048896
author Clubb, James H. A.
Kudling, Tatiana V.
Girych, Mykhailo
Haybout, Lyna
Pakola, Santeri
Hamdan, Firas
Cervera-Carrascon, Víctor
Hemmes, Annabrita
Grönberg-Vähä-Koskela, Susanna
Santos, João Manuel
Quixabeira, Dafne C. A.
Basnet, Saru
Heiniö, Camilla
Arias, Victor
Jirovec, Elise
Kaptan, Shreyas
Havunen, Riikka
Sorsa, Suvi
Erikat, Abdullah
Schwartz, Joel
Anttila, Marjukka
Aro, Katri
Viitala, Tapani
Vattulainen, Ilpo
Cerullo, Vincenzo
Kanerva, Anna
Hemminki, Akseli
author_facet Clubb, James H. A.
Kudling, Tatiana V.
Girych, Mykhailo
Haybout, Lyna
Pakola, Santeri
Hamdan, Firas
Cervera-Carrascon, Víctor
Hemmes, Annabrita
Grönberg-Vähä-Koskela, Susanna
Santos, João Manuel
Quixabeira, Dafne C. A.
Basnet, Saru
Heiniö, Camilla
Arias, Victor
Jirovec, Elise
Kaptan, Shreyas
Havunen, Riikka
Sorsa, Suvi
Erikat, Abdullah
Schwartz, Joel
Anttila, Marjukka
Aro, Katri
Viitala, Tapani
Vattulainen, Ilpo
Cerullo, Vincenzo
Kanerva, Anna
Hemminki, Akseli
author_sort Clubb, James H. A.
collection PubMed
description INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). METHODS: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). RESULTS: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. CONCLUSIONS: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.
format Online
Article
Text
id pubmed-9936529
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99365292023-02-18 Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting Clubb, James H. A. Kudling, Tatiana V. Girych, Mykhailo Haybout, Lyna Pakola, Santeri Hamdan, Firas Cervera-Carrascon, Víctor Hemmes, Annabrita Grönberg-Vähä-Koskela, Susanna Santos, João Manuel Quixabeira, Dafne C. A. Basnet, Saru Heiniö, Camilla Arias, Victor Jirovec, Elise Kaptan, Shreyas Havunen, Riikka Sorsa, Suvi Erikat, Abdullah Schwartz, Joel Anttila, Marjukka Aro, Katri Viitala, Tapani Vattulainen, Ilpo Cerullo, Vincenzo Kanerva, Anna Hemminki, Akseli Front Immunol Immunology INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). METHODS: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). RESULTS: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. CONCLUSIONS: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles. Frontiers Media S.A. 2023-02-03 /pmc/articles/PMC9936529/ /pubmed/36817448 http://dx.doi.org/10.3389/fimmu.2023.1060540 Text en Copyright © 2023 Clubb, Kudling, Girych, Haybout, Pakola, Hamdan, Cervera-Carrascon, Hemmes, Grönberg-Vähä-Koskela, Santos, Quixabeira, Basnet, Heiniö, Arias, Jirovec, Kaptan, Havunen, Sorsa, Erikat, Schwartz, Anttila, Aro, Viitala, Vattulainen, Cerullo, Kanerva and Hemminki https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Clubb, James H. A.
Kudling, Tatiana V.
Girych, Mykhailo
Haybout, Lyna
Pakola, Santeri
Hamdan, Firas
Cervera-Carrascon, Víctor
Hemmes, Annabrita
Grönberg-Vähä-Koskela, Susanna
Santos, João Manuel
Quixabeira, Dafne C. A.
Basnet, Saru
Heiniö, Camilla
Arias, Victor
Jirovec, Elise
Kaptan, Shreyas
Havunen, Riikka
Sorsa, Suvi
Erikat, Abdullah
Schwartz, Joel
Anttila, Marjukka
Aro, Katri
Viitala, Tapani
Vattulainen, Ilpo
Cerullo, Vincenzo
Kanerva, Anna
Hemminki, Akseli
Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title_full Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title_fullStr Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title_full_unstemmed Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title_short Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
title_sort development of a syrian hamster anti-pd-l1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936529/
https://www.ncbi.nlm.nih.gov/pubmed/36817448
http://dx.doi.org/10.3389/fimmu.2023.1060540
work_keys_str_mv AT clubbjamesha developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT kudlingtatianav developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT girychmykhailo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT hayboutlyna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT pakolasanteri developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT hamdanfiras developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT cerveracarrasconvictor developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT hemmesannabrita developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT gronbergvahakoskelasusanna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT santosjoaomanuel developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT quixabeiradafneca developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT basnetsaru developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT heiniocamilla developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT ariasvictor developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT jirovecelise developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT kaptanshreyas developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT havunenriikka developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT sorsasuvi developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT erikatabdullah developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT schwartzjoel developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT anttilamarjukka developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT arokatri developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT viitalatapani developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT vattulainenilpo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT cerullovincenzo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT kanervaanna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting
AT hemminkiakseli developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting