Cargando…
Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting
INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936529/ https://www.ncbi.nlm.nih.gov/pubmed/36817448 http://dx.doi.org/10.3389/fimmu.2023.1060540 |
_version_ | 1784890251748048896 |
---|---|
author | Clubb, James H. A. Kudling, Tatiana V. Girych, Mykhailo Haybout, Lyna Pakola, Santeri Hamdan, Firas Cervera-Carrascon, Víctor Hemmes, Annabrita Grönberg-Vähä-Koskela, Susanna Santos, João Manuel Quixabeira, Dafne C. A. Basnet, Saru Heiniö, Camilla Arias, Victor Jirovec, Elise Kaptan, Shreyas Havunen, Riikka Sorsa, Suvi Erikat, Abdullah Schwartz, Joel Anttila, Marjukka Aro, Katri Viitala, Tapani Vattulainen, Ilpo Cerullo, Vincenzo Kanerva, Anna Hemminki, Akseli |
author_facet | Clubb, James H. A. Kudling, Tatiana V. Girych, Mykhailo Haybout, Lyna Pakola, Santeri Hamdan, Firas Cervera-Carrascon, Víctor Hemmes, Annabrita Grönberg-Vähä-Koskela, Susanna Santos, João Manuel Quixabeira, Dafne C. A. Basnet, Saru Heiniö, Camilla Arias, Victor Jirovec, Elise Kaptan, Shreyas Havunen, Riikka Sorsa, Suvi Erikat, Abdullah Schwartz, Joel Anttila, Marjukka Aro, Katri Viitala, Tapani Vattulainen, Ilpo Cerullo, Vincenzo Kanerva, Anna Hemminki, Akseli |
author_sort | Clubb, James H. A. |
collection | PubMed |
description | INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). METHODS: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). RESULTS: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. CONCLUSIONS: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles. |
format | Online Article Text |
id | pubmed-9936529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99365292023-02-18 Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting Clubb, James H. A. Kudling, Tatiana V. Girych, Mykhailo Haybout, Lyna Pakola, Santeri Hamdan, Firas Cervera-Carrascon, Víctor Hemmes, Annabrita Grönberg-Vähä-Koskela, Susanna Santos, João Manuel Quixabeira, Dafne C. A. Basnet, Saru Heiniö, Camilla Arias, Victor Jirovec, Elise Kaptan, Shreyas Havunen, Riikka Sorsa, Suvi Erikat, Abdullah Schwartz, Joel Anttila, Marjukka Aro, Katri Viitala, Tapani Vattulainen, Ilpo Cerullo, Vincenzo Kanerva, Anna Hemminki, Akseli Front Immunol Immunology INTRODUCTION: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). METHODS: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). RESULTS: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. CONCLUSIONS: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles. Frontiers Media S.A. 2023-02-03 /pmc/articles/PMC9936529/ /pubmed/36817448 http://dx.doi.org/10.3389/fimmu.2023.1060540 Text en Copyright © 2023 Clubb, Kudling, Girych, Haybout, Pakola, Hamdan, Cervera-Carrascon, Hemmes, Grönberg-Vähä-Koskela, Santos, Quixabeira, Basnet, Heiniö, Arias, Jirovec, Kaptan, Havunen, Sorsa, Erikat, Schwartz, Anttila, Aro, Viitala, Vattulainen, Cerullo, Kanerva and Hemminki https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Clubb, James H. A. Kudling, Tatiana V. Girych, Mykhailo Haybout, Lyna Pakola, Santeri Hamdan, Firas Cervera-Carrascon, Víctor Hemmes, Annabrita Grönberg-Vähä-Koskela, Susanna Santos, João Manuel Quixabeira, Dafne C. A. Basnet, Saru Heiniö, Camilla Arias, Victor Jirovec, Elise Kaptan, Shreyas Havunen, Riikka Sorsa, Suvi Erikat, Abdullah Schwartz, Joel Anttila, Marjukka Aro, Katri Viitala, Tapani Vattulainen, Ilpo Cerullo, Vincenzo Kanerva, Anna Hemminki, Akseli Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title | Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title_full | Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title_fullStr | Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title_full_unstemmed | Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title_short | Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
title_sort | development of a syrian hamster anti-pd-l1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936529/ https://www.ncbi.nlm.nih.gov/pubmed/36817448 http://dx.doi.org/10.3389/fimmu.2023.1060540 |
work_keys_str_mv | AT clubbjamesha developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT kudlingtatianav developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT girychmykhailo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT hayboutlyna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT pakolasanteri developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT hamdanfiras developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT cerveracarrasconvictor developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT hemmesannabrita developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT gronbergvahakoskelasusanna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT santosjoaomanuel developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT quixabeiradafneca developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT basnetsaru developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT heiniocamilla developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT ariasvictor developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT jirovecelise developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT kaptanshreyas developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT havunenriikka developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT sorsasuvi developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT erikatabdullah developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT schwartzjoel developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT anttilamarjukka developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT arokatri developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT viitalatapani developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT vattulainenilpo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT cerullovincenzo developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT kanervaanna developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting AT hemminkiakseli developmentofasyrianhamsterantipdl1monoclonalantibodyenablesoncolyticadenoviralimmunotherapymodellinginanimmunocompetentvirusreplicationpermissivesetting |