Cargando…
Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation
[Image: see text] Artificial intelligence (AI) can accelerate catalyst design by identifying key physicochemical descriptive parameters correlated with the underlying processes triggering, favoring, or hindering the performance. In analogy to genes in biology, these parameters might be called “mater...
Autores principales: | Foppa, Lucas, Rüther, Frederik, Geske, Michael, Koch, Gregor, Girgsdies, Frank, Kube, Pierre, Carey, Spencer J., Hävecker, Michael, Timpe, Olaf, Tarasov, Andrey V., Scheffler, Matthias, Rosowski, Frank, Schlögl, Robert, Trunschke, Annette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936587/ https://www.ncbi.nlm.nih.gov/pubmed/36745555 http://dx.doi.org/10.1021/jacs.2c11117 |
Ejemplares similares
-
Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence
por: Foppa, Lucas, et al.
Publicado: (2021) -
The Influence of the Chemical Potential on Defects and Function of Perovskites in Catalysis
por: Koch, Gregor, et al.
Publicado: (2021) -
How to control selectivity in alkane oxidation?
por: Li, Xuan, et al.
Publicado: (2018) -
Fluctuating Storage of the Active Phase in a Mn‐Na(2)WO(4)/SiO(2) Catalyst for the Oxidative Coupling of Methane
por: Werny, Maximilian J., et al.
Publicado: (2020) -
Transition from 2D to 3D SBA‐15 by High‐Temperature Fluoride Addition and its Impact on the Surface Reactivity Probed by Isopropanol Conversion
por: Lamoth, Maximilian, et al.
Publicado: (2020)