Cargando…

The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations

BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters o...

Descripción completa

Detalles Bibliográficos
Autor principal: Austin, Peter C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936690/
https://www.ncbi.nlm.nih.gov/pubmed/36800931
http://dx.doi.org/10.1186/s12874-023-01836-5
_version_ 1784890281982689280
author Austin, Peter C.
author_facet Austin, Peter C.
author_sort Austin, Peter C.
collection PubMed
description BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a specified marginal or population-average hazard ratio. RESULTS: In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that resulted in the simulated data having the desired characteristics. CONCLUSION: An iterative bisection procedure can be used to identify numeric values for parameters in data-generating processes to generate data with specified characteristics.
format Online
Article
Text
id pubmed-9936690
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-99366902023-02-18 The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations Austin, Peter C. BMC Med Res Methodol Research BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a specified marginal or population-average hazard ratio. RESULTS: In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that resulted in the simulated data having the desired characteristics. CONCLUSION: An iterative bisection procedure can be used to identify numeric values for parameters in data-generating processes to generate data with specified characteristics. BioMed Central 2023-02-17 /pmc/articles/PMC9936690/ /pubmed/36800931 http://dx.doi.org/10.1186/s12874-023-01836-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Austin, Peter C.
The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title_full The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title_fullStr The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title_full_unstemmed The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title_short The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
title_sort iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in monte carlo simulations
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936690/
https://www.ncbi.nlm.nih.gov/pubmed/36800931
http://dx.doi.org/10.1186/s12874-023-01836-5
work_keys_str_mv AT austinpeterc theiterativebisectionprocedureausefultoolfordeterminingparametervaluesindatageneratingprocessesinmontecarlosimulations
AT austinpeterc iterativebisectionprocedureausefultoolfordeterminingparametervaluesindatageneratingprocessesinmontecarlosimulations