Cargando…
The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations
BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters o...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936690/ https://www.ncbi.nlm.nih.gov/pubmed/36800931 http://dx.doi.org/10.1186/s12874-023-01836-5 |
_version_ | 1784890281982689280 |
---|---|
author | Austin, Peter C. |
author_facet | Austin, Peter C. |
author_sort | Austin, Peter C. |
collection | PubMed |
description | BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a specified marginal or population-average hazard ratio. RESULTS: In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that resulted in the simulated data having the desired characteristics. CONCLUSION: An iterative bisection procedure can be used to identify numeric values for parameters in data-generating processes to generate data with specified characteristics. |
format | Online Article Text |
id | pubmed-9936690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-99366902023-02-18 The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations Austin, Peter C. BMC Med Res Methodol Research BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a specified marginal or population-average hazard ratio. RESULTS: In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that resulted in the simulated data having the desired characteristics. CONCLUSION: An iterative bisection procedure can be used to identify numeric values for parameters in data-generating processes to generate data with specified characteristics. BioMed Central 2023-02-17 /pmc/articles/PMC9936690/ /pubmed/36800931 http://dx.doi.org/10.1186/s12874-023-01836-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Austin, Peter C. The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title | The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title_full | The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title_fullStr | The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title_full_unstemmed | The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title_short | The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations |
title_sort | iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in monte carlo simulations |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936690/ https://www.ncbi.nlm.nih.gov/pubmed/36800931 http://dx.doi.org/10.1186/s12874-023-01836-5 |
work_keys_str_mv | AT austinpeterc theiterativebisectionprocedureausefultoolfordeterminingparametervaluesindatageneratingprocessesinmontecarlosimulations AT austinpeterc iterativebisectionprocedureausefultoolfordeterminingparametervaluesindatageneratingprocessesinmontecarlosimulations |