Cargando…

PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation

The lungs of patients with COVID-19 exhibit distinctive lesion features in chest CT images. Fast and accurate segmentation of lesion sites from CT images of patients’ lungs is significant for the diagnosis and monitoring of COVID-19 patients. To this end, we propose a progressive dense residual fusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiaoyan, Xu, Yang, Yuan, Wenhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936947/
http://dx.doi.org/10.1007/s12530-023-09489-x
Descripción
Sumario:The lungs of patients with COVID-19 exhibit distinctive lesion features in chest CT images. Fast and accurate segmentation of lesion sites from CT images of patients’ lungs is significant for the diagnosis and monitoring of COVID-19 patients. To this end, we propose a progressive dense residual fusion network named PDRF-Net for COVID-19 lung CT segmentation. Dense skip connections are introduced to capture multi-level contextual information and compensate for the feature loss problem in network delivery. The efficient aggregated residual module is designed for the encoding-decoding structure, which combines a visual transformer and the residual block to enable the network to extract richer and minute-detail features from CT images. Furthermore, we introduce a bilateral channel pixel weighted module to progressively fuse the feature maps obtained from multiple branches. The proposed PDRF-Net obtains good segmentation results on two COVID-19 datasets. Its segmentation performance is superior to baseline by 11.6% and 11.1%, and outperforming other comparative mainstream methods. Thus, PDRF-Net serves as an easy-to-train, high-performance deep learning model that can realize effective segmentation of the COVID-19 lung CT images.