Cargando…

Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice

CONTEXT: X-linked hypophosphatemia (XLH) is a genetic disease, causing life-long hypophosphatemia due to overproduction of fibroblast growth factor 23 (FGF23). XLH is associated with Chiari malformations, cranial synostosis, and syringomyelia. FGF23 signals through FGFR1c and requires a coreceptor,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaplan, Jared, Tommasini, Steven, Yao, Gang-Qing, Zhu, Meiling, Nishimura, Sayoko, Ghazarian, Sevanne, Louvi, Angeliki, Insogna, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936957/
https://www.ncbi.nlm.nih.gov/pubmed/36819458
http://dx.doi.org/10.1210/jendso/bvad022
_version_ 1784890332203188224
author Kaplan, Jared
Tommasini, Steven
Yao, Gang-Qing
Zhu, Meiling
Nishimura, Sayoko
Ghazarian, Sevanne
Louvi, Angeliki
Insogna, Karl
author_facet Kaplan, Jared
Tommasini, Steven
Yao, Gang-Qing
Zhu, Meiling
Nishimura, Sayoko
Ghazarian, Sevanne
Louvi, Angeliki
Insogna, Karl
author_sort Kaplan, Jared
collection PubMed
description CONTEXT: X-linked hypophosphatemia (XLH) is a genetic disease, causing life-long hypophosphatemia due to overproduction of fibroblast growth factor 23 (FGF23). XLH is associated with Chiari malformations, cranial synostosis, and syringomyelia. FGF23 signals through FGFR1c and requires a coreceptor, α-Klotho, which is expressed in the renal distal convoluted tubules and the choroid plexus (ChP). In the ChP, α-Klotho participates in regulating cerebrospinal fluid (CSF) production by shuttling the sodium/potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) to the luminal membrane. The sodium/potassium/chloride cotransporter 1 (NKCC1) also makes a substantial contribution to CSF production. OBJECTIVE: Since CSF production has not been studied in XLH, we sought to determine if there are changes in the expression of these molecules in the ChP of Hyp mice, the murine model of XLH, as a first step toward testing the hypothesis that altered CSF production contributes to the cranial and spinal malformations seen this disease. METHODS: Semi-quantitative real-time PCR was used to analyze the level of expression of transcripts for Fgfr1c, and thee key regulators of CSF production, Klotho, Atp1a1 and Slc12a2. In situ hybridization was used to provide anatomical localization for the encoded proteins. RESULTS: Real-time polymerase chain reaction (RT-PCR) demonstrated significant upregulation of Klotho transcripts in the fourth ventricle of Hyp mice compared to controls. Transcript levels for Fgfr1c were unchanged in Hyp mice. Atp1a1 transcripts encoding the alpha-1 subunit of Na(+)/K(+)-ATPase were significantly downregulated in the third and lateral ventricles (LV). Expression levels of the Slc12a2 transcript (which encodes NKCC1) were unchanged in Hyp mice compared to controls. In situ hybridization (ISH) confirmed the presence of all 4 transcripts in the LV ChP both of WT and Hyp mice. CONCLUSION: This is the first study to document a significant change in the level of expression of the molecular machinery required for CSF production in Hyp mice. Whether similar changes occur in patients with XLH, potentially contributing to the cranial and spinal cord abnormalities frequently seen in XLH, remains to be determined.
format Online
Article
Text
id pubmed-9936957
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99369572023-02-18 Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice Kaplan, Jared Tommasini, Steven Yao, Gang-Qing Zhu, Meiling Nishimura, Sayoko Ghazarian, Sevanne Louvi, Angeliki Insogna, Karl J Endocr Soc Research Article CONTEXT: X-linked hypophosphatemia (XLH) is a genetic disease, causing life-long hypophosphatemia due to overproduction of fibroblast growth factor 23 (FGF23). XLH is associated with Chiari malformations, cranial synostosis, and syringomyelia. FGF23 signals through FGFR1c and requires a coreceptor, α-Klotho, which is expressed in the renal distal convoluted tubules and the choroid plexus (ChP). In the ChP, α-Klotho participates in regulating cerebrospinal fluid (CSF) production by shuttling the sodium/potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) to the luminal membrane. The sodium/potassium/chloride cotransporter 1 (NKCC1) also makes a substantial contribution to CSF production. OBJECTIVE: Since CSF production has not been studied in XLH, we sought to determine if there are changes in the expression of these molecules in the ChP of Hyp mice, the murine model of XLH, as a first step toward testing the hypothesis that altered CSF production contributes to the cranial and spinal malformations seen this disease. METHODS: Semi-quantitative real-time PCR was used to analyze the level of expression of transcripts for Fgfr1c, and thee key regulators of CSF production, Klotho, Atp1a1 and Slc12a2. In situ hybridization was used to provide anatomical localization for the encoded proteins. RESULTS: Real-time polymerase chain reaction (RT-PCR) demonstrated significant upregulation of Klotho transcripts in the fourth ventricle of Hyp mice compared to controls. Transcript levels for Fgfr1c were unchanged in Hyp mice. Atp1a1 transcripts encoding the alpha-1 subunit of Na(+)/K(+)-ATPase were significantly downregulated in the third and lateral ventricles (LV). Expression levels of the Slc12a2 transcript (which encodes NKCC1) were unchanged in Hyp mice compared to controls. In situ hybridization (ISH) confirmed the presence of all 4 transcripts in the LV ChP both of WT and Hyp mice. CONCLUSION: This is the first study to document a significant change in the level of expression of the molecular machinery required for CSF production in Hyp mice. Whether similar changes occur in patients with XLH, potentially contributing to the cranial and spinal cord abnormalities frequently seen in XLH, remains to be determined. Oxford University Press 2023-02-06 /pmc/articles/PMC9936957/ /pubmed/36819458 http://dx.doi.org/10.1210/jendso/bvad022 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research Article
Kaplan, Jared
Tommasini, Steven
Yao, Gang-Qing
Zhu, Meiling
Nishimura, Sayoko
Ghazarian, Sevanne
Louvi, Angeliki
Insogna, Karl
Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title_full Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title_fullStr Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title_full_unstemmed Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title_short Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production in Hyp Mice
title_sort altered expression of several molecular mediators of cerebrospinal fluid production in hyp mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936957/
https://www.ncbi.nlm.nih.gov/pubmed/36819458
http://dx.doi.org/10.1210/jendso/bvad022
work_keys_str_mv AT kaplanjared alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT tommasinisteven alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT yaogangqing alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT zhumeiling alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT nishimurasayoko alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT ghazariansevanne alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT louviangeliki alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice
AT insognakarl alteredexpressionofseveralmolecularmediatorsofcerebrospinalfluidproductioninhypmice