Cargando…
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
The electrocardiogram (ECG), as an essential basis for the diagnosis of cardiovascular diseases, is usually disturbed by various noise. To obtain accurate human physiological information from ECG, the denoising and reconstruction of ECG are critical. In this paper, we proposed an ECG denoising metho...
Autores principales: | Wang, Huidong, Ma, Yurun, Zhang, Aihua, Lin, Dongmei, Qi, Yusheng, Li, Jiaqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937753/ https://www.ncbi.nlm.nih.gov/pubmed/36818542 http://dx.doi.org/10.1155/2023/6737102 |
Ejemplares similares
-
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
por: Fotiadou, Eleni, et al.
Publicado: (2020) -
Interpatient ECG Heartbeat Classification with an Adversarial Convolutional Neural Network
por: Zhang, Jing, et al.
Publicado: (2021) -
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022) -
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
por: Zhu, Fei, et al.
Publicado: (2019) -
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018)