Cargando…

Biogas from aquatic plants: A bioenergetics incentive for constructed wetlands usage

Our study demonstrated the energy gains when using biomass from three macrophyte, used commonly in constructed wetlands for wastewater treatment, the water hyacinth, cattail, and dwarf papyrus, as a substrate for biogas generation. The biochemical methane potential for the three biomass was evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Moretti, Erika Rabello, Roston, Denis Miguel, da Silva, Ariovaldo José, Reyes, Ileana Pereda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937903/
https://www.ncbi.nlm.nih.gov/pubmed/36820048
http://dx.doi.org/10.1016/j.heliyon.2022.e12537
Descripción
Sumario:Our study demonstrated the energy gains when using biomass from three macrophyte, used commonly in constructed wetlands for wastewater treatment, the water hyacinth, cattail, and dwarf papyrus, as a substrate for biogas generation. The biochemical methane potential for the three biomass was evaluated in batch and at bench at 37 °C. A kinetic analysis of anaerobic digestion was also conducted for these substrates, evaluating the biogas composition and energy potential. Anaerobic digestion resulted in 94.27, and 25 mL(CH4)/gVS(substrate) of dry mass; and 19,569.65, 5617.88, and 6068.45 kJ/t of cattail, water hyacinth, and dwarf papyrus, respectively. Biomass from water hyacinth did sustain the fastest degradation, indicating that models considering the lag phase are more adequate to evaluate the anaerobic digestion of this type of substrate. Higher digestion speed resulted in the generation of 2901.88 kJ/t more energy with biomass from water hyacinth versus cattail, highlighting its value for use in constructed wetlands.