Cargando…
Accuracy of low-cost alternative facial scanners: a prospective cohort study
INTRODUCTION: Three-dimensional facial scans have recently begun to play an increasingly important role in the peri-therapeutic management of oral and maxillofacial and head and neck surgery cases. Face scan images can be generated by optical facial scanners utilizing line-laser, stereophotography,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938030/ https://www.ncbi.nlm.nih.gov/pubmed/35249150 http://dx.doi.org/10.1007/s10006-022-01050-5 |
Sumario: | INTRODUCTION: Three-dimensional facial scans have recently begun to play an increasingly important role in the peri-therapeutic management of oral and maxillofacial and head and neck surgery cases. Face scan images can be generated by optical facial scanners utilizing line-laser, stereophotography, or structured light modalities, as well as from volumetric data: for example, from cone beam computed tomography (CBCT). This study aimed to evaluate whether two low-cost procedures for the creation of three-dimensional face scan images were capable of producing sufficiently accurate data sets for clinical analysis. MATERIALS AND METHODS: Fifty healthy volunteers were included in the study. Two test objects with defined dimensions (Lego bricks) were attached to the forehead and the left cheek of each volunteer. Facial anthropometric values (i.e., the distances between the medial canthi, the lateral canthi, the nasal alae, and the angles of the mouth) were first measured manually. Subsequently, face scans were performed with a smart device and manual photogrammetry and the values obtained were compared with the manually measured data sets. RESULTS: The anthropometric distances deviated, on average, 2.17 mm from the manual measurements (smart device scanning deviation 3.01 mm, photogrammetry deviation 1.34 mm), with seven out of eight deviations being statistically significant. For the Lego brick, from a total of 32 angles, 19 values demonstrated a significant difference from the original 90° angles. The average deviation was 6.5° (smart device scanning deviation 10.1°, photogrammetry deviation 2.8°). CONCLUSION: Manual photogrammetry demonstrated greater accuracy when creating three-dimensional face scan images; however, smart devices are more user-friendly. Dental professionals should monitor camera and smart device technical improvements carefully when choosing and adequate technique for 3D scanning. |
---|