Cargando…
Rhizophagus irregularis improves Hg tolerance of Medicago truncatula by upregulating the Zn transporter genes ZIP2 and ZIP6
Mercury (Hg) pollution of soils is a critical environmental problem. To rehabilitate Hg contaminated soils, arbuscular mycorrhizal (AM) fungi-based phytoremediation may be supportive, yet the functional potential of AM fungi in response to Hg exposure is unclear. In a greenhouse experiment, we asses...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938064/ https://www.ncbi.nlm.nih.gov/pubmed/36625901 http://dx.doi.org/10.1007/s00572-022-01100-6 |
Sumario: | Mercury (Hg) pollution of soils is a critical environmental problem. To rehabilitate Hg contaminated soils, arbuscular mycorrhizal (AM) fungi-based phytoremediation may be supportive, yet the functional potential of AM fungi in response to Hg exposure is unclear. In a greenhouse experiment, we assessed the response of Medicago truncatula (Hg tolerance index (TI), Hg partitioning) to different Hg concentrations [0 (Hg0), 25 (Hg25), 50 (Hg50) µg g(−1)] in treatments with (AM) and without (NM) inoculation of Rhizophagus irregularis. Additionally, zinc (Zn) uptake and the expression of two Zn transporter genes (ZIP2, ZIP6) were examined because Zn is an essential element for plants and shares the same outer electronic configuration as Hg, implying potential competition for the same transporters. The results showed that AM plants had a higher TI than NM plants. Plant roots were identified as dominant Hg reservoirs. AM inoculation reduced the root Hg concentration under Hg50 compared to the NM treatment. There was an interaction between Hg treatment and AM inoculation on Hg stem concentration, i.e., at Hg25, AM inoculation decreased the Hg translocation from roots to stems, while Hg translocation was increased at Hg50 compared to the NM treatment. Zn acquisition was improved by R. irregularis. The negative relationship between Hg and Zn concentrations in the roots of AM and NM plants implied potential competition for the same transporters, although the expression of Zn transporters was upregulated by AM inoculation at all Hg levels. In conclusion, this baseline study demonstrated that R. irregularis may play an important role in Hg tolerance of M. truncatula, suggesting its potential for Hg-contaminated phytoremediation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00572-022-01100-6. |
---|