Cargando…
Global long term daily 1 km surface soil moisture dataset with physics informed machine learning
Although soil moisture is a key factor of hydrologic and climate applications, global continuous high resolution soil moisture datasets are still limited. Here we use physics-informed machine learning to generate a global, long-term, spatially continuous high resolution dataset of surface soil moist...
Autores principales: | Han, Qianqian, Zeng, Yijian, Zhang, Lijie, Wang, Chao, Prikaziuk, Egor, Niu, Zhenguo, Su, Bob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938112/ https://www.ncbi.nlm.nih.gov/pubmed/36805459 http://dx.doi.org/10.1038/s41597-023-02011-7 |
Ejemplares similares
-
A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution
por: Zheng, Chaolei, et al.
Publicado: (2023) -
A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015
por: Naz, Bibi S., et al.
Publicado: (2020) -
A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019)
por: Yao, Panpan, et al.
Publicado: (2021) -
A global daily soil moisture dataset derived from Chinese FengYun Microwave Radiation Imager (MWRI)(2010–2019)
por: Yao, Panpan, et al.
Publicado: (2023) -
High-resolution European daily soil moisture derived with machine learning (2003–2020)
por: O, Sungmin, et al.
Publicado: (2022)