Cargando…
Machine learning intelligence to assess the shear capacity of corroded reinforced concrete beams
The ability of machine learning (ML) techniques to forecast the shear strength of corroded reinforced concrete beams (CRCBs) is examined in the present study. These ML techniques include artificial neural networks (ANN), adaptive-neuro fuzzy inference systems (ANFIS), decision tree (DT) and extreme...
Autores principales: | Kumar, Aman, Arora, Harish Chandra, Kapoor, Nishant Raj, Kumar, Krishna, Hadzima-Nyarko, Marijana, Radu, Dorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938144/ https://www.ncbi.nlm.nih.gov/pubmed/36807317 http://dx.doi.org/10.1038/s41598-023-30037-9 |
Ejemplares similares
-
Enhancing Sustainability of Corroded RC Structures: Estimating Steel-to-Concrete Bond Strength with ANN and SVM Algorithms
por: Singh, Rohan, et al.
Publicado: (2022) -
Experimental Study on Shear Capacity of Reinforced Concrete Beams with Corroded Longitudinal Reinforcement
por: Han, Sun-Jin, et al.
Publicado: (2019) -
Limit Equilibrium Method-based Shear Strength Prediction for Corroded Reinforced Concrete Beam with Inclined Bars
por: Ma, Yafei, et al.
Publicado: (2019) -
Structural Retrofitting of Corroded Reinforced Concrete Beams Using Bamboo Fiber Laminate
por: Awoyera, Paul Oluwaseun, et al.
Publicado: (2021) -
A Brief Overview on Crack Patterns, Repair and Strengthening of Historical Masonry Structures
por: Latifi, Reza, et al.
Publicado: (2023)