Cargando…
A role for ion homeostasis in yeast ionic liquid tolerance
The model yeast Saccharomyces cerevisiae is being developed as a biocatalyst for the conversion of renewable lignocellulosic biomass into biofuels. The ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) solubilizes lignocellulose for deconstruction into fermentable sugars, but it inhibits ye...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938406/ https://www.ncbi.nlm.nih.gov/pubmed/36820393 http://dx.doi.org/10.17912/micropub.biology.000718 |
Sumario: | The model yeast Saccharomyces cerevisiae is being developed as a biocatalyst for the conversion of renewable lignocellulosic biomass into biofuels. The ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) solubilizes lignocellulose for deconstruction into fermentable sugars, but it inhibits yeast fermentation. EMIMCl tolerance is mediated by the efflux pump Sge1p and uncharacterized protein Ilt1p. Through genetic investigation, we found that disruption of ion homeostasis through mutations in genes encoding the Trk1p potassium transporter and its protein kinase regulators, Sat4p and Hal5p, causes EMIMCl sensitivity. These results suggest that maintenance of ion homeostasis is important for tolerance to EMIMCl. |
---|