Cargando…
Electricity price forecast based on the STL-TCN-NBEATS model
Taking long-term high-frequency electricity price data as the research content, this paper proposes seasonal and trend decomposition using loess-temporal convolutional network-neural basis expansion analysis for an interpretable time series forecasting (STL-TCN-NBEATS) model to solve the problems of...
Autores principales: | Zhang, Biao, Song, Chao, Jiang, Xuchu, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938466/ https://www.ncbi.nlm.nih.gov/pubmed/36820190 http://dx.doi.org/10.1016/j.heliyon.2023.e13029 |
Ejemplares similares
-
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
por: Li, Wenlin, et al.
Publicado: (2023) -
Short-term power load forecasting based on the CEEMDAN-TCN-ESN model
por: Huang, Jiacheng, et al.
Publicado: (2023) -
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023) -
Forecast and analysis of aircraft passenger satisfaction based on RF-RFE-LR model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Short-Term Demand Forecasting Method in Power Markets Based on the KSVM–TCN–GBRT
por: Yang, Guang, et al.
Publicado: (2022)