Cargando…
Cellulose-based bionanocomposites in energy storage applications-A review
The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938483/ https://www.ncbi.nlm.nih.gov/pubmed/36820173 http://dx.doi.org/10.1016/j.heliyon.2023.e13028 |
_version_ | 1784890641698783232 |
---|---|
author | Das, Atanu Kumar Islam, Md Nazrul Ghosh, Rupak Kumar Maryana, Roni |
author_facet | Das, Atanu Kumar Islam, Md Nazrul Ghosh, Rupak Kumar Maryana, Roni |
author_sort | Das, Atanu Kumar |
collection | PubMed |
description | The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration for their application in energy storage devices because of their specific electrochemical properties. Cellulose-based bionanocomposites have added a new dimension to this field since these are developed from available renewable biomaterials. Studies on developing electrodes, separators, collectors, and electrolytes for the batteries have been conducted based on these composites rigorously. Electrodes and separators made of these composites for the supercapacitors have also been investigated. Researchers have used a wide range of micro- and nano-structural cellulose along with nanostructured inorganic materials to produce cellulose-based bionanocomposites for energy devices, i.e., supercapacitors and batteries. The presence of cellulosic materials enhances the loading capacity of active materials and uniform porous structure in the electrode matrix. Thus, it has shown improved electrochemical properties. Therefore, these can help to develop biodegradable, lightweight, malleable, and strong energy storage devices. In this review article, the manufacturing process, properties, applications, and possible opportunities of cellulose-based bionanocomposites in energy storage devices have been emphasized. Its challenges and opportunities have also been discussed. |
format | Online Article Text |
id | pubmed-9938483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99384832023-02-19 Cellulose-based bionanocomposites in energy storage applications-A review Das, Atanu Kumar Islam, Md Nazrul Ghosh, Rupak Kumar Maryana, Roni Heliyon Review Article The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration for their application in energy storage devices because of their specific electrochemical properties. Cellulose-based bionanocomposites have added a new dimension to this field since these are developed from available renewable biomaterials. Studies on developing electrodes, separators, collectors, and electrolytes for the batteries have been conducted based on these composites rigorously. Electrodes and separators made of these composites for the supercapacitors have also been investigated. Researchers have used a wide range of micro- and nano-structural cellulose along with nanostructured inorganic materials to produce cellulose-based bionanocomposites for energy devices, i.e., supercapacitors and batteries. The presence of cellulosic materials enhances the loading capacity of active materials and uniform porous structure in the electrode matrix. Thus, it has shown improved electrochemical properties. Therefore, these can help to develop biodegradable, lightweight, malleable, and strong energy storage devices. In this review article, the manufacturing process, properties, applications, and possible opportunities of cellulose-based bionanocomposites in energy storage devices have been emphasized. Its challenges and opportunities have also been discussed. Elsevier 2023-01-16 /pmc/articles/PMC9938483/ /pubmed/36820173 http://dx.doi.org/10.1016/j.heliyon.2023.e13028 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Article Das, Atanu Kumar Islam, Md Nazrul Ghosh, Rupak Kumar Maryana, Roni Cellulose-based bionanocomposites in energy storage applications-A review |
title | Cellulose-based bionanocomposites in energy storage applications-A review |
title_full | Cellulose-based bionanocomposites in energy storage applications-A review |
title_fullStr | Cellulose-based bionanocomposites in energy storage applications-A review |
title_full_unstemmed | Cellulose-based bionanocomposites in energy storage applications-A review |
title_short | Cellulose-based bionanocomposites in energy storage applications-A review |
title_sort | cellulose-based bionanocomposites in energy storage applications-a review |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938483/ https://www.ncbi.nlm.nih.gov/pubmed/36820173 http://dx.doi.org/10.1016/j.heliyon.2023.e13028 |
work_keys_str_mv | AT dasatanukumar cellulosebasedbionanocompositesinenergystorageapplicationsareview AT islammdnazrul cellulosebasedbionanocompositesinenergystorageapplicationsareview AT ghoshrupakkumar cellulosebasedbionanocompositesinenergystorageapplicationsareview AT maryanaroni cellulosebasedbionanocompositesinenergystorageapplicationsareview |