Cargando…
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
Binary classification is a common task for which machine learning and computational statistics are used, and the area under the receiver operating characteristic curve (ROC AUC) has become the common standard metric to evaluate binary classifications in most scientific fields. The ROC curve has true...
Autores principales: | Chicco, Davide, Jurman, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938573/ https://www.ncbi.nlm.nih.gov/pubmed/36800973 http://dx.doi.org/10.1186/s13040-023-00322-4 |
Ejemplares similares
-
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
por: Chicco, Davide, et al.
Publicado: (2020) -
The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
por: Chicco, Davide, et al.
Publicado: (2021) -
An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence
por: Chicco, Davide, et al.
Publicado: (2022) -
Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
por: Boughorbel, Sabri, et al.
Publicado: (2017) -
Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient
por: Foody, Giles M.
Publicado: (2023)