Cargando…
Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort
BACKGROUND: Eye lesions, occur in nearly half of patients with Behçet’s Disease (BD), can lead to irreversible damage and vision loss; however, limited studies are available on identifying risk factors for the development of vision-threatening BD (VTBD). Using an Egyptian college of rheumatology (EC...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938580/ https://www.ncbi.nlm.nih.gov/pubmed/36803463 http://dx.doi.org/10.1186/s12911-023-02130-6 |
_version_ | 1784890662563348480 |
---|---|
author | Hammam, Nevin Bakhiet, Ali El-Latif, Eiman Abd El-Gazzar, Iman I. Samy, Nermeen Noor, Rasha A. Abdel El-Shebeiny, Emad El-Najjar, Amany R. Eesa, Nahla N. Salem, Mohamed N. Ibrahim, Soha E. El-Essawi, Dina F. Elsaman, Ahmed M. Fathi, Hanan M. Sallam, Rehab A. El Shereef, Rawhya R. Ismail, Faten Abd-Elazeem, Mervat I. Said, Emtethal A. Khalil, Noha M. Shahin, Dina El-Saadany, Hanan M. ElKhalifa, Marwa Nasef, Samah I. Abdalla, Ahmed M. Noshy, Nermeen Fawzy, Rasha M. Saad, Ehab Moshrif, Abdelhafeez El-Shanawany, Amira T. Abdel-Fattah, Yousra H. Khalil, Hossam M. Hammam, Osman Fathy, Aly Ahmed Gheita, Tamer A. |
author_facet | Hammam, Nevin Bakhiet, Ali El-Latif, Eiman Abd El-Gazzar, Iman I. Samy, Nermeen Noor, Rasha A. Abdel El-Shebeiny, Emad El-Najjar, Amany R. Eesa, Nahla N. Salem, Mohamed N. Ibrahim, Soha E. El-Essawi, Dina F. Elsaman, Ahmed M. Fathi, Hanan M. Sallam, Rehab A. El Shereef, Rawhya R. Ismail, Faten Abd-Elazeem, Mervat I. Said, Emtethal A. Khalil, Noha M. Shahin, Dina El-Saadany, Hanan M. ElKhalifa, Marwa Nasef, Samah I. Abdalla, Ahmed M. Noshy, Nermeen Fawzy, Rasha M. Saad, Ehab Moshrif, Abdelhafeez El-Shanawany, Amira T. Abdel-Fattah, Yousra H. Khalil, Hossam M. Hammam, Osman Fathy, Aly Ahmed Gheita, Tamer A. |
author_sort | Hammam, Nevin |
collection | PubMed |
description | BACKGROUND: Eye lesions, occur in nearly half of patients with Behçet’s Disease (BD), can lead to irreversible damage and vision loss; however, limited studies are available on identifying risk factors for the development of vision-threatening BD (VTBD). Using an Egyptian college of rheumatology (ECR)-BD, a national cohort of BD patients, we examined the performance of machine-learning (ML) models in predicting VTBD compared to logistic regression (LR) analysis. We identified the risk factors for the development of VTBD. METHODS: Patients with complete ocular data were included. VTBD was determined by the presence of any retinal disease, optic nerve involvement, or occurrence of blindness. Various ML-models were developed and examined for VTBD prediction. The Shapley additive explanation value was used for the interpretability of the predictors. RESULTS: A total of 1094 BD patients [71.5% were men, mean ± SD age 36.1 ± 10 years] were included. 549 (50.2%) individuals had VTBD. Extreme Gradient Boosting was the best-performing ML model (AUROC 0.85, 95% CI 0.81, 0.90) compared with logistic regression (AUROC 0.64, 95%CI 0.58, 0.71). Higher disease activity, thrombocytosis, ever smoking, and daily steroid dose were the top factors associated with VTBD. CONCLUSIONS: Using information obtained in the clinical settings, the Extreme Gradient Boosting identified patients at higher risk of VTBD better than the conventional statistical method. Further longitudinal studies to evaluate the clinical utility of the proposed prediction model are needed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-023-02130-6. |
format | Online Article Text |
id | pubmed-9938580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-99385802023-02-19 Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort Hammam, Nevin Bakhiet, Ali El-Latif, Eiman Abd El-Gazzar, Iman I. Samy, Nermeen Noor, Rasha A. Abdel El-Shebeiny, Emad El-Najjar, Amany R. Eesa, Nahla N. Salem, Mohamed N. Ibrahim, Soha E. El-Essawi, Dina F. Elsaman, Ahmed M. Fathi, Hanan M. Sallam, Rehab A. El Shereef, Rawhya R. Ismail, Faten Abd-Elazeem, Mervat I. Said, Emtethal A. Khalil, Noha M. Shahin, Dina El-Saadany, Hanan M. ElKhalifa, Marwa Nasef, Samah I. Abdalla, Ahmed M. Noshy, Nermeen Fawzy, Rasha M. Saad, Ehab Moshrif, Abdelhafeez El-Shanawany, Amira T. Abdel-Fattah, Yousra H. Khalil, Hossam M. Hammam, Osman Fathy, Aly Ahmed Gheita, Tamer A. BMC Med Inform Decis Mak Research BACKGROUND: Eye lesions, occur in nearly half of patients with Behçet’s Disease (BD), can lead to irreversible damage and vision loss; however, limited studies are available on identifying risk factors for the development of vision-threatening BD (VTBD). Using an Egyptian college of rheumatology (ECR)-BD, a national cohort of BD patients, we examined the performance of machine-learning (ML) models in predicting VTBD compared to logistic regression (LR) analysis. We identified the risk factors for the development of VTBD. METHODS: Patients with complete ocular data were included. VTBD was determined by the presence of any retinal disease, optic nerve involvement, or occurrence of blindness. Various ML-models were developed and examined for VTBD prediction. The Shapley additive explanation value was used for the interpretability of the predictors. RESULTS: A total of 1094 BD patients [71.5% were men, mean ± SD age 36.1 ± 10 years] were included. 549 (50.2%) individuals had VTBD. Extreme Gradient Boosting was the best-performing ML model (AUROC 0.85, 95% CI 0.81, 0.90) compared with logistic regression (AUROC 0.64, 95%CI 0.58, 0.71). Higher disease activity, thrombocytosis, ever smoking, and daily steroid dose were the top factors associated with VTBD. CONCLUSIONS: Using information obtained in the clinical settings, the Extreme Gradient Boosting identified patients at higher risk of VTBD better than the conventional statistical method. Further longitudinal studies to evaluate the clinical utility of the proposed prediction model are needed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-023-02130-6. BioMed Central 2023-02-17 /pmc/articles/PMC9938580/ /pubmed/36803463 http://dx.doi.org/10.1186/s12911-023-02130-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Hammam, Nevin Bakhiet, Ali El-Latif, Eiman Abd El-Gazzar, Iman I. Samy, Nermeen Noor, Rasha A. Abdel El-Shebeiny, Emad El-Najjar, Amany R. Eesa, Nahla N. Salem, Mohamed N. Ibrahim, Soha E. El-Essawi, Dina F. Elsaman, Ahmed M. Fathi, Hanan M. Sallam, Rehab A. El Shereef, Rawhya R. Ismail, Faten Abd-Elazeem, Mervat I. Said, Emtethal A. Khalil, Noha M. Shahin, Dina El-Saadany, Hanan M. ElKhalifa, Marwa Nasef, Samah I. Abdalla, Ahmed M. Noshy, Nermeen Fawzy, Rasha M. Saad, Ehab Moshrif, Abdelhafeez El-Shanawany, Amira T. Abdel-Fattah, Yousra H. Khalil, Hossam M. Hammam, Osman Fathy, Aly Ahmed Gheita, Tamer A. Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title | Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title_full | Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title_fullStr | Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title_full_unstemmed | Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title_short | Development of machine learning models for detection of vision threatening Behçet’s disease (BD) using Egyptian College of Rheumatology (ECR)–BD cohort |
title_sort | development of machine learning models for detection of vision threatening behçet’s disease (bd) using egyptian college of rheumatology (ecr)–bd cohort |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938580/ https://www.ncbi.nlm.nih.gov/pubmed/36803463 http://dx.doi.org/10.1186/s12911-023-02130-6 |
work_keys_str_mv | AT hammamnevin developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT bakhietali developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT ellatifeimanabd developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elgazzarimani developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT samynermeen developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT noorrashaaabdel developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elshebeinyemad developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elnajjaramanyr developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT eesanahlan developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT salemmohamedn developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT ibrahimsohae developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elessawidinaf developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elsamanahmedm developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT fathihananm developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT sallamrehaba developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elshereefrawhyar developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT ismailfaten developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT abdelazeemmervati developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT saidemtethala developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT khalilnoham developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT shahindina developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elsaadanyhananm developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elkhalifamarwa developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT nasefsamahi developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT abdallaahmedm developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT noshynermeen developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT fawzyrasham developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT saadehab developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT moshrifabdelhafeez developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT elshanawanyamirat developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT abdelfattahyousrah developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT khalilhossamm developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT hammamosman developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT fathyalyahmed developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort AT gheitatamera developmentofmachinelearningmodelsfordetectionofvisionthreateningbehcetsdiseasebdusingegyptiancollegeofrheumatologyecrbdcohort |