Cargando…

Overexpression of FoxM1 Enhanced the Protective Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Lipopolysaccharide-Induced Acute Lung Injury through the Activation of Wnt/β-Catenin Signaling

BACKGROUND: Mesenchymal stem cell- (MSC-) based cell and gene therapies have made remarkable progress in alleviating acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the benefits of Forkhead box protein M1 (FoxM1) gene-modified MSCs in the treatment of ALI have not been stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yuling, Lin, Shan, Mao, Xueyan, Yang, Yongqiang, He, Wanmei, Guo, Manliang, Zeng, Mian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938779/
https://www.ncbi.nlm.nih.gov/pubmed/36820407
http://dx.doi.org/10.1155/2023/8324504
Descripción
Sumario:BACKGROUND: Mesenchymal stem cell- (MSC-) based cell and gene therapies have made remarkable progress in alleviating acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the benefits of Forkhead box protein M1 (FoxM1) gene-modified MSCs in the treatment of ALI have not been studied. METHODS: We evaluated the therapeutic effects of FoxM1-modified MSCs in ALI mice induced by lipopolysaccharide (LPS) by quantifying the survival rate, lung weight ratio (wet/dry), and contents of bronchoalveolar lavage fluid. In addition, microcomputed tomography, histopathology, Evans Blue assay, and quantification of apoptosis were performed. We also explored the underlying mechanism by assessing Wnt/β-catenin signaling following the treatment of mice with FoxM1-modified MSCs utilizing the Wnt/β-catenin inhibitor XAV-939. RESULTS: Compared with unmodified MSCs, transplantation of FoxM1-modified MSCs improved survival and vascular permeability; reduced total cell counts, leukocyte counts, total protein concentrations, and inflammatory cytokines in BALF; attenuated lung pathological impairments and fibrosis; and inhibited apoptosis in LPS-induced ALI/ARDS mice. Furthermore, FoxM1-modified MSCs maintained vascular integrity during ALI/ARDS by upregulating Wnt/β-catenin signaling, which was partly reversed via a pathway inhibitor. CONCLUSION: Overexpression of FoxM1 optimizes the treatment action of MSCs on ALI/ARDS by inhibiting inflammation and apoptosis and restoring vascular integrity partially through Wnt/β-catenin signaling pathway stimulation.